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The manufacturing workflow of CAR-T cells makes it easy to be further modified by gene editing strategies.
The rapid development of gene editing technology not only unveiled the mystery of T cells, but also provided
a huge space for the optimization and development of the CAR-T cells. Here, we review the crucial role of
gene editing in improving the safety, efficacy and accessibility of CAR-T cells in clinic.

Owing to the continuous advances in gene editing technology, the CRISPR-Cas9 as well as zinc finger
nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) mediated genome mod-
ification has been widely used in both basic research and clinical applications, especially in genetic disorders
and cancers [1,2]. Meanwhile, chimeric antigen receptor (CAR) T cell therapy has shown dramatic efficacy
in the treatment of hematological cancers and been approved for commercial use [3]. However, the appli-
cation of CAR-T cell therapy in treating solid tumors was restricted by unaffordable price and poor efficacy.
The rapid and versatile approach for genomic modification by gene editing technology makes it possible to
extend the application of T cell therapy through optimizing the manufacturing process and clinical efficacy
[4]. Thus, different approaches have been employed in the identification of the key regulators in T cells,
generating enhanced CAR-T cells, developing allogeneic universal CAR-T cells and revolutionary optimi-
zation to manufacturing techniques and functions of CAR-T cells (Figure 1).

Functional screening of key regulators in T cells using CRISPR-Cas9. Limited persistence, pro-
liferation and cytotoxicity of CAR-T cells restrict the development of effective CAR-T therapies to solid
tumor as well as hematological cancer. Therefore, multiple genome-wide CRISPR knock-out screens have
been approached to identify genes involved in T cell dysfunction. Through unbiased genetic screening that
mimics tumor microenvironment (TME) under several immunosuppressive conditions, RASA2, a RAS
GTPase-activating protein (RasGAP) was demonstrated to be a promising target, which can enhance the
persistence and effective function of T cells in treating cancers [5]. However, loss-of-function screens based
on CRISPR are limited to exploring negative regulators of T cell functions [6,7]. The gain-of-function
screening can be also mediated by a dead-guide RNA (dgRNA)-based CRISPR to identify proline dehy-
drogenase 2 (PRODH2/Prodh2) as the positive regulator of T cell functions [8]. Furthermore, barcoded
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Figure 1 The application of CRISPR-Cas9 system in CAR-T therapy.

human open reading frames (ORFs) overexpression was used to identify positive regulators of T cell
functions such as lymphotoxin- receptor (LTBR) which had great potential in future cancer-agnostic
therapies [9]. Thus, the functional screening of key regulators provides a number of strategies for improving
next-generation T cell therapies through the loss-of-function as well as gain-of-function screens and in-
duction of synthetic cell programs.

Enhancing the potential of CAR-T cells by endogenous gene modification. The in vitro manufacturing
process makes it easy to influence the gene expression of CAR-T cells through gene editing tools. As the
most popular immune checkpoint, the inhibitory effects of PD-1 have been disrupted by CRISPR-Cas9 for a
long time which result in enhanced antitumor activity in both preclinical and clinical studies [10-12]. In
comparison, the genetic depletion of mitogen-activated protein kinase 1 (MAP4K1) by CRISPR-Cas9 was
demonstrated to be more effective than genetic knockout of PD-1 in CAR-T cells [13]. Meanwhile, T cell-
specific protein tyrosine phosphatase 1B (PTP1B) deletion repressed tumor growth and strengthened the
response to PD-1 blockade [14]. Deletion of sushi domain containing 2 (Susd2) improves antitumor efficacy
of CAR-T cells as well [15]. CRISPR-edited GM-CSF knockout in addition to autonomous IL6/IL1
blockades could minimize both the efficiency and safety issues such as GM-CSF-associated toxicity in CAR-
T therapy [16]. In addition, the CAR gene was successfully inserted into the TCRa subunit constant gene
(TRAC) by the CRISPR/Cas system combined with HDR, thus blocking the expression of endogenous TCR
expression [17]. Furthermore, IL-12P70 was integrated into programmed cell death protein 1 (PDCD1) gene
or IL2Ra, which leads to a transient, antigen concentration-dependent secretion of IL-12P70, increases the
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cytotoxicity of CAR-T cells, and prolongs survival of tumor-bearing mice [18]. Taken together, with the
assistance of gene editing technology, efficacy of CAR-T cells could be enhanced significantly to get better
therapeutic outcomes.

Generation of allogeneic universal CAR-T cells by gene editing. The application of personalized CAR-
T cells was restricted by significant clinical and logistical barriers [19]. Therefore, an “off the shelf”
allogeneic CAR-T therapy is an attractive solution to improve the accessibility of CAR-T cells to all patients.
Gene editing technologies have yielded strategies to control GVHD risk by efficiently eliminating T cell
receptor (TCR) expression, and have opened up new techniques to render allogeneic CAR-T cells invisible
(or at least minimally visible) to the host immune system. Simultaneously disrupting TCR and CD52 by
TALENSs in T cells, the “off-the-shelf” CAR-T cells (UCART19) showed in vivo expansion and anti-
leukaemic activity with a controllable safety in patients with relapsed or refractory B cell acute lymphoblastic
leukemia [20]. Similarly, CD19/CD22-targeting CAR-T cells (CTA101) with TRAC region and CD52 gene
depletion using CRISPR/Cas9 system were also evaluated in clinical treatment of the patients with relapsed/
refractory acute lymphoblastic leukemia (r/r ALL) [21]. The human leukocyte antigen (HLA)-I-deficient T-
cell generated by disrupting B2M loci is another way to develop immune-evasive universal CAR-T cells,
whereas the depletion of HLA-I molecules will cause the activation of NK cells. Thus, a NK-inhibitor should
be introduced to evade NK cell attacks. Combined with recombinant adeno-associated virus 6 (AAV6) and
multiplex TALENs treatments, universal CAR-T cells were constructed by inserting a CAR and HLA-E, a
non-polymorphic NK inhibitor into the B2M and TRAC loci, respectively. These allogeneic CAR-T cells
were shown to evade attack by NK cells and alloresponsive T-cells and to extend their persistence and
antitumor activity in the condition of NK cell induced cytotoxic levels in vivo and in vitro [22]. After
genetically depletion of CD7, HLA-II and TCR, in co-expression with the common cytokine receptor y chain
and NK cell inhibitor (NKi), the CD7-targeting allogeneic CAR-T cells were demonstrated to have en-
couraging safety and efficacy profiles for relapsed/refractory CD7-positive hematological malignancies [23].
And the gene editing strategy used in T cells could also be extended to induced pluripotent stem cells (iPSCs)
which could be developed into different kinds of universal cells for particular clinical applications [24].
Although the generation of allogeneic universal CAR-T cells still faces many challenges, we believe that the
next generation of universal CAR-T cells will benefit a broader range of patients after improving the
therapeutic outcomes and allowing them to be used on a large-scale in multiple malignancies.

Revolutionary developments optimize the manufacturing process and function of CAR-T cells. Even
though 9 kinds of CAR-T products have been approved to enter the market, the viral vector is still the only
method for manufacturing commercialized CAR-T cells. However, viral production is currently very costly
up to 40% of the total cost of CAR-T cells, and the random integration of viral DNA in the chromosomes is
also a subject of concern. Therefore, the non-viral and specifically targeted manufacturing process of CAR-T
cells is urgently needed. Whereas, homology-directed repair (HDR) is relatively rare and DSBs are mainly
repaired by non-homologous end joining (NHEJ) in mammalian cells, which hindered the application of
precise genome editing. Recently, a non-viral and PD-1-specific targeted CAR-T cells were generated by
CRISPR-Cas9, which showed superior efficacy and safety to eradicate tumor cells in treatment of relapsed/
refractory aggressive B cell non-Hodgkin lymphoma [25]. Single-cell analysis exhibited that this manu-
facturing process produced a higher proportion of memory T cells and enhanced the antitumor immune
function of CAR-T cells, which have great potential in competing with or replacing the current virus-based
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Table 1 Clinical studies using gene-editing CAR-T cells

ClinicalTrials.gov Gene editing

Identifiers Targets Conditions to00ls Edited genes Sponsors and collaborators
Relapse/refractory Bioray Laboratories
NCT04213469 CDI19 B-Cell Non-Hodgkin CRISPR PD-1 First Affiliated Hospital of
Lymphoma (B-NHL) Zhejiang University
Acute Lymphoblastic Bioray Laboratories
NCT05381181 CD19 Leukemia (ALL), CRISPR TCR, HLA-I First Affiliated Hospital of
B-NHL Zhengzhou University
NCT04037566 CD19 ALL, B-C.e.ll, CD19 CRISPR HPK1 Xi’An Yufantlotechn(.)logy Co.,Ltd
Positive Xijing Hospital
NCT05859997 CD19 Relapse or reffactory CRISPR TCR, HLA-I Bioray Laboratories Sl}anghal
autoimmune diseases Changzheng Hospital
NCT03747965 MSLN Solid Tumor CRISPR PD-1 Chinese PLA General Hospital
NCT04976218 EGFR Solid Tumor CRISPR TGEF-B receptor 11 Chinese PLA General Hospital
NCT05714345 (D19 Relapsed/Refractory Large .y TCR, CD52 Allogene Therapeutics

B Cell Lymphoma

. TCR, B-2 Poseida Therapeutics, Inc.
~ ™ > >
NCT04960579 BCMA Multiple Myeloma (MM) Cas-CLOVER! microglobulin Roche-Genentech
NCT04637763 CD19 Refractory B-NHL CRISPR TCR, PD-1 Caribou Biosciences, Inc.
NCT05643742 CD19 B-cell Malignancy CRISPR mi:r?;io%jlin CRISPR Therapeutics AG
NCT04142619 CS1 Relapsed/Refractory MM TALEN CS1, TCR Cellectis S.A.
NCT04154709  CDI9 ALL CRISPR TCR, CD52 Nanjing Bioheng Biotech Co., Ltd.

Xuzhou Medical University

CD7" Hematologic First Affiliated Hospital of

NCT04538599 CD7 CRISPR CD7, TCR, MHC 1I

Malignancies Zhejiang University
+ . Wugen, Inc.
NCT05377827  CD7 CD7" Hematologic CRISPR CD7, TCR Washington University

Malignancies School of Medicine

manufacturing process. Meanwhile, through a site-specific mutation to Casl2a, the efficiency of HDR-
mediated gene integration and the CD19 CAR knock-in efficiency were improved significantly, suggesting
the great potential of Casl2a in T cell engineering [26]. Manufacturing costs and complexity should be
drastically reduced to benefit all patients, and nonviral approaches appear to have a unique perspective on
clinical application conditions and current good manufacturing practice.

Limitation and safety concerns on gene-editing CAR-T cells. Like most other applications of gene-
editing technology, the off-target effects are also the biggest concerns in gene-editing-based CAR-T cells
which have potential risk to interfere tumor-suppressor genes or oncogenes. Meanwhile, multiple gene
editing such as manufacturing for allogeneic CAR-T cells may cause chromosomal abnormality as well,
which has been found in a patient who had received Allogene Therapeutics’ TALEN-edited allogeneic CAR-
T cells. And this chromosomal aberration is not random but specific to chromosome 14 which is the location
of target gene TRAC, suggesting the close correlation with gene editing. Theoretically, the gene editing
induced chromosomal abnormality not limited to TALEN technology, each double-strand breaks (DSBs) to
the target DNA can generate chromosomal damage, including large-scale deletions, rearrangements and
chromothripsis [27]. Thus, the advantage of base and prime editing can be exploited in CAR-T therapy to
avoid potential genotoxicities associated with DSBs. Meanwhile, the upcoming iPSCs technology makes it
possible to develop a unique batch from a single clone which seems much safer than gene-edited hetero-
geneous cell pool. Nonetheless, the gene editing-associated genotoxic safety issues should be continuously
concerned in clinical application of CAR-T therapy.
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Emerging genome-editing applications enable the creation of more-effective CAR-T cells that are cost-
effective, safe, durable and available. However, the off-target effects and efficiency are still hurdles along the
way for clinical application. Fortunately, improved CRISPR-Cas systems, careful sgRNA designing, and
upgraded gene editing tools, such as adenine or cytosine base editors, truncated g-RNAs, ribonucleoprotein
delivery, and prime editing, can minimize the off-target effects of the gene editing systems. And the safety
and efficacy of more and more gene-editing CAR-T cells have been verified in clinical trials (Table 1). We
anticipate that in the coming years, gene editing technologies will expand the versatility of CAR-T cells to be
more effective and safer, thus becoming an indispensable living drugs to fulfill more unmet clinical needs.
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