Natl Sci Open
Volume 1, Number 2, 2022
Special Topic: Emerging Pollution and Emerging Pollutants
Article Number 20220014
Number of page(s) 19
Section Earth and Environmental Sciences
Published online 17 August 2022
  • Selin NE Global biogeochemical cycling of mercury: a review.Annu Rev Environ Resour 2009; 34: 43-63. [CrossRef] [Google Scholar]
  • Global Mercury Assessment 2018. United Nations Environment Programme, Chemicals and Health Branch Geneva. 2019. [Google Scholar]
  • Si L, Ariya P Recent advances in atmospheric chemistry of mercury.Atmosphere 2018; 9: 76. [CrossRef] [MathSciNet] [Google Scholar]
  • Steffen A, Douglas T, Amyot M, et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow.Atmos Chem Phys 2008; 8: 1445-1482. [NASA ADS] [CrossRef] [Google Scholar]
  • Temme C, Einax JW, Ebinghaus R, et al. Measurements of atmospheric mercury species at a coastal site in the antarctic and over the South Atlantic Ocean during Polar Summer.Environ Sci Technol 2003; 37: 22-31. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Horowitz HM, Jacob DJ, Zhang Y, et al. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget.Atmos Chem Phys 2017; 17: 6353-6371. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang F, Saiz-Lopez A, Mahajan AS, et al. Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway.Atmos Chem Phys 2014; 14: 1323-1335. [NASA ADS] [CrossRef] [Google Scholar]
  • De Simone F, Cinnirella S, Gencarelli CN, et al. Model study of global mercury deposition from biomass burning.Environ Sci Technol 2015; 49: 6712-6721. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Travnikov O, Angot H, Artaxo P, et al. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation.Atmos Chem Phys 2017; 17: 5271-5295. [NASA ADS] [CrossRef] [Google Scholar]
  • Saiz-Lopez A, Acuña AU, Trabelsi T, et al. Gas-phase photolysis of Hg(I) radical species: a new atmospheric mercury reduction process.J Am Chem Soc 2019; 141: 8698-8702. [Google Scholar]
  • Saiz-Lopez A, Sitkiewicz SP, Roca-Sanjuán D, et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition.Nat Commun 2018; 9: 4796. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sun G, Sommar J, Feng X, et al. Mass-dependent and-independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl and Br.Environ Sci Technol 2016; 50: 9232-9241. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Bergquist BA, Blum JD Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems.Science 2007; 318: 417-420. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Estrade N, Carignan J, Sonke JE, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments.Geochim Cosmochim Acta 2009; 73: 2693-2711. [CrossRef] [Google Scholar]
  • Zheng W, Hintelmann H Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio.Geochim Cosmochim Acta 2009; 73: 6704-6715. [NASA ADS] [CrossRef] [Google Scholar]
  • Chen JB, Hintelmann H, Feng XB, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada.Geochim Cosmochim Acta 2012; 90: 33-46. [NASA ADS] [CrossRef] [Google Scholar]
  • Au Yang D, Bardoux G, Assayag N, et al. Atmospheric SO oxidation by NO plays no role in the mass independent sulfur isotope fractionation of urban aerosols.Atmos Environ 2018; 193: 109-117. [NASA ADS] [CrossRef] [Google Scholar]
  • Harris E, Sinha B, Hoppe P, et al. High-precision measurements of S and S fractionation during SO oxidation reveal causes of seasonality in SO and sulfate isotopic composition.Environ Sci Technol 2013; 47: 12174-12183. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lyons JR Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere.Geophys Res Lett 2001; 28: 3231-3234. [NASA ADS] [CrossRef] [Google Scholar]
  • Savarino J, Thiemens MH Analytical procedure to determine both O and O of HO in natural water and first measurements.Atmos Environ 1999; 33: 3683-3690. [NASA ADS] [CrossRef] [Google Scholar]
  • Savarino J, Lee CCW, Thiemens MH Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth.J Geophys Res 2000; 105: 29079-29088. [CrossRef] [Google Scholar]
  • Krankowsky D, Bartecki F, Klees GG, et al. Measurement of heavy isotope enrichment in tropospheric ozone.Geophys Res Lett 1995; 22: 1713-1716. [NASA ADS] [CrossRef] [Google Scholar]
  • Johnston JC, Thiemens MH The isotopic composition of tropospheric ozone in three environments.J Geophys Res 1997; 102: 25395-25404. [NASA ADS] [CrossRef] [Google Scholar]
  • Vicars WC, Savarino J Quantitative constraints on the O-excess (ΔO) signature of surface ozone: Ambient measurements from 50°N to 50°S using the nitrite-coated filter technique.Geochim Cosmochim Acta 2014; 135: 270-287. [NASA ADS] [CrossRef] [Google Scholar]
  • Holt BD, Cunningham PT, Kumar R Oxygen isotopy of atmospheric sulfates.Environ Sci Technol 1981; 15: 804-808. [NASA ADS] [CrossRef] [Google Scholar]
  • Barkan E, Luz B High precision measurements of O/O and O/O ratios in HO.Rapid Commun Mass Spectrom 2005; 19: 3737-3742. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lin M, Kang S, Shaheen R, et al. Atmospheric sulfur isotopic anomalies recorded at Mt. Everest across the Anthropocene.Proc Natl Acad Sci USA 2018; 115: 6964-6969. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Romero AB, Thiemens MH. Mass-independent sulfur isotopic compositions in present-day sulfate aerosols. J Geophys Res-Atmos 2003. [Google Scholar]
  • Au Yang D, Cartigny P, Desboeufs K, et al. Seasonality in the ΔS measured in urban aerosols highlights an additional oxidation pathway for atmospheric SO.Atmos Chem Phys 2019; 19: 3779-3796. [NASA ADS] [CrossRef] [Google Scholar]
  • Chen X, Balasubramanian R, Zhu Q, et al. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai.Atmos Environ 2016; 131: 400-408. [NASA ADS] [CrossRef] [Google Scholar]
  • Shi G, Ma H, Zhu Z, et al. Using stable isotopes to distinguish atmospheric nitrate production and its contribution to the surface ocean across hemispheres.Earth Planet Sci Lett 2021; 564: 116914. [NASA ADS] [CrossRef] [Google Scholar]
  • Berger A, Yin Q. Chapter 15—Modelling the past and future interglacials in response to astronomical and greenhouse gas forcing. In: Henderson-Sellers A, Mcguffie K, eds. The Future of the World’s Climate (2nd ed). Boston: Elsevier. 2012: 437–462. [CrossRef] [Google Scholar]
  • Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2012. [Google Scholar]
  • Calvert JG, Lindberg SE Mechanisms of mercury removal by O and OH in the atmosphere.Atmos Environ 2005; 39: 3355-3367. [NASA ADS] [CrossRef] [Google Scholar]
  • Hall B. The gas phase oxidation of elemental mercury by ozone. Water Air Soil Pollut 1995; 80: 301–315. [NASA ADS] [CrossRef] [Google Scholar]
  • Pal B, Ariya PA Studies of ozone initiated reactions of gaseous mercury: kinetics, product studies, and atmospheric implications.Phys Chem Chem Phys 2004; 6: 572. [NASA ADS] [CrossRef] [Google Scholar]
  • Raofie F, Ariya PA Product study of the gas-phase BrO-initiated oxidation of Hg: evidence for stable Hg compounds.Environ Sci Technol 2004; 38: 4319-4326. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sommar J, Gårdfeldt K, Strömberg D, et al. A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury.Atmos Environ 2001; 35: 3049-3054. [NASA ADS] [CrossRef] [Google Scholar]
  • Lu X, Zhang L, Zhao Y, et al. Surface and tropospheric ozone trends in the Southern Hemisphere since 1990: possible linkages to poleward expansion of the Hadley Circulation.Sci Bull 2019; 64: 400-409. [NASA ADS] [CrossRef] [Google Scholar]
  • Stone D, Whalley LK, Heard DE Tropospheric OH and HO radicals: field measurements and model comparisons.Chem Soc Rev 2012; 41: 6348. [CrossRef] [PubMed] [Google Scholar]
  • Saiz-Lopez A, Travnikov O, Sonke JE, et al. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere.Proc Natl Acad Sci USA 2020; 117: 30949-30956. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yang S, Liu Y Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead.Sci Rep 2015; 5: 12626. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chen Q, Sherwen T, Evans M, et al. DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry.Atmos Chem Phys 2018; 18: 13617-13637. [NASA ADS] [CrossRef] [Google Scholar]
  • Fu X, Zhang H, Feng X, et al. Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes.Environ Sci Technol 2019; 53: 1947-1957. [CrossRef] [PubMed] [Google Scholar]
  • Guo Z, Li Z, Farquhar J, et al. Identification of sources and formation processes of atmospheric sulfate by sulfur isotope and scanning electron microscope measurements.J Geophys Res 2010; 115: D00K07. [Google Scholar]
  • Lin M, Zhang Z, Su L, et al. Unexpected high S concentration revealing strong downward transport of stratospheric air during the monsoon transitional period in East Asia.Geophys Res Lett 2016; 43: 2315-2322. [NASA ADS] [CrossRef] [Google Scholar]
  • Kleinschmitt C, Boucher O, Platt U Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO injection studied with the LMDZ-S3A model.Atmos Chem Phys 2018; 18: 2769-2786. [NASA ADS] [CrossRef] [Google Scholar]
  • Ono S, Whitehill AR, Lyons JR Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis.J Geophys Res-Atmos 2013; 118: 2444-2454. [NASA ADS] [CrossRef] [Google Scholar]
  • Han X, Guo Q, Strauss H, et al. Multiple sulfur isotope constraints on sources and formation processes of sulfate in Beijing PM aerosol.Environ Sci Technol 2017; 51: 7794-7803. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Boothe AC, Homeyer CR Global large-scale stratosphere-troposphere exchange in modern reanalyses.Atmos Chem Phys 2017; 17: 5537-5559. [NASA ADS] [CrossRef] [Google Scholar]
  • Genot I, Au Yang D, Martin E, et al. Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative ΔS reservoir of sulfate aerosols?.Atmos Chem Phys 2020; 20: 4255-4273. [NASA ADS] [CrossRef] [Google Scholar]
  • McGowan H, Clark A Identification of dust transport pathways from Lake Eyre, Australia using Hysplit.Atmos Environ 2008; 42: 6915-6925. [NASA ADS] [CrossRef] [Google Scholar]
  • Whitehill AR, Ono S Excitation band dependence of sulfur isotope mass-independent fractionation during photochemistry of sulfur dioxide using broadband light sources.Geochim Cosmochim Acta 2012; 94: 238-253. [NASA ADS] [CrossRef] [Google Scholar]
  • Nerentorp Mastromonaco M, Gårdfeldt K, Jourdain B, et al. Antarctic winter mercury and ozone depletion events over sea ice.Atmos Environ 2016; 129: 125-132. [NASA ADS] [CrossRef] [Google Scholar]
  • Spolaor A, Angot H, Roman M, et al. Feedback mechanisms between snow and atmospheric mercury: results and observations from field campaigns on the Antarctic Plateau.Chemosphere 2018; 197: 306-317. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Dommergue A, Barret M, Courteaud J, et al. Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic Plateau.Atmos Chem Phys 2012; 12: 11027-11036. [NASA ADS] [CrossRef] [Google Scholar]
  • Angot H, Magand O, Helmig D, et al. New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale.Atmos Chem Phys 2016; 16: 8249-8264. [NASA ADS] [CrossRef] [Google Scholar]
  • Kirk JL, St. Louis VL, Sharp MJ Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada.Environ Sci Technol 2006; 40: 7590-7596. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sherman LS, Blum JD, Johnson KP, et al. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight.Nat Geosci 2010; 3: 173-177. [NASA ADS] [CrossRef] [Google Scholar]
  • Song S, Angot H, Selin NE, et al. Understanding mercury oxidation and air-snow exchange on the East Antarctic Plateau: a modeling study.Atmos Chem Phys 2018; 18: 15825-15840. [NASA ADS] [CrossRef] [Google Scholar]
  • Huang Q, Chen J, Huang W, et al. Isotopic composition for source identification of mercury in atmospheric fine particles.Atmos Chem Phys 2016; 16: 11773-11786. [NASA ADS] [CrossRef] [Google Scholar]
  • Watson RA A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014.Sci Data 2017; 4: 170039. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Savarino J, Kaiser J, Morin S, et al. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica.Atmos Chem Phys 2007; 7: 1925-1945. [CrossRef] [Google Scholar]
  • Shi G, Buffen AM, Ma H, et al. Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet.Geochim Cosmochim Acta 2018; 231: 1-14. [CrossRef] [Google Scholar]
  • Fu X, Yang X, Tan Q, et al. Isotopic composition of gaseous elemental mercury in the marine boundary layer of east China Sea.J Geophys Res-Atmos 2018; 123: 7656-7669. [NASA ADS] [Google Scholar]
  • Ghahremaninezhad R, Norman AL, Abbatt JPD, et al. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer.Atmos Chem Phys 2016; 16: 5191-5202. [NASA ADS] [CrossRef] [Google Scholar]
  • Han X, Guo Q, Liu C, et al. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.Sci Rep 2016; 6: 29958. [CrossRef] [PubMed] [Google Scholar]
  • Huang Q, Chen J, Huang W, et al. Diel variation in mercury stable isotope ratios records photoreduction of PM-bound mercury.Atmos Chem Phys 2019; 19: 315-325. [CrossRef] [MathSciNet] [Google Scholar]
  • Gustin MS, Amos HM, Huang J, et al. Measuring and modeling mercury in the atmosphere: a critical review.Atmos Chem Phys 2015; 15: 5697-5713. [NASA ADS] [CrossRef] [Google Scholar]
  • Lyman SN, Cheng I, Gratz LE, et al. An updated review of atmospheric mercury.Sci Total Environ 2020; 707: 135575. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Shi G, Li Y, Jiang S, et al. Large-scale spatial variability of major ions in the atmospheric wet deposition along the China-Antarctica transect (31°N–69°S).Tellus B-Chem Phys Meteorol 2012; 64: 17134. [NASA ADS] [CrossRef] [Google Scholar]
  • Huang Q, Liu YL, Chen JB, et al. An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement.J Anal At Spectrom 2015; 30: 957-966. [Google Scholar]
  • Thode HG, Monster J, Dunford HB Sulphur isotope geochemistry.Geochim Cosmochim Acta 1961; 25: 159-174. [NASA ADS] [CrossRef] [Google Scholar]
  • Defouilloy C, Cartigny P, Assayag N, et al. High-precision sulfur isotope composition of enstatite meteorites and implications of the formation and evolution of their parent bodies.Geochim Cosmochim Acta 2016; 172: 393-409. [CrossRef] [Google Scholar]
  • Labidi J, Cartigny P, Birck JL, et al. Determination of multiple sulfur isotopes in glasses: a reappraisal of the MORB S.Chem Geol 2012; 334: 189-198. [NASA ADS] [CrossRef] [Google Scholar]
  • Au Yang D, Landais G, Assayag N, et al. Improved analysis of micro- and nanomole-scale sulfur multi-isotope compositions by gas source isotope ratio mass spectrometry.Rapid Commun Mass Spectrom 2016; 30: 897-907. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sun R, Enrico M, Heimbürger LE, et al. A double-stage tube furnace—acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis.Anal Bioanal Chem 2013; 405: 6771-6781. [CrossRef] [PubMed] [Google Scholar]
  • Yin R, Krabbenhoft DP, Bergquist BA, et al. Effects of mercury and thallium concentrations on high precision determination of mercury isotopic composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry.J Anal At Spectrom 2016; 31: 2060-2068. [CrossRef] [Google Scholar]
  • Blum JD, Bergquist BA Reporting of variations in the natural isotopic composition of mercury.Anal Bioanal Chem 2007; 388: 353-359. [CrossRef] [PubMed] [Google Scholar]
  • Geng H, Yin R, Li X An optimized protocol for high precision measurement of Hg isotopic compositions in samples with low concentrations of Hg using MC-ICP-MS.J Anal At Spectrom 2018; 33: 1932-1940. [CrossRef] [MathSciNet] [Google Scholar]
  • Wang Z, Chen J, Feng X, et al. Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China.Comptes Rendus Geosci 2015; 347: 358-367. [NASA ADS] [CrossRef] [Google Scholar]
  • Yuan S, Chen J, Cai H, et al. Sequential samples reveal significant variation of mercury isotope ratios during single rainfall events.Sci Total Environ 2018; 624: 133-144. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Chen J, Zheng W, et al. Mercury isotope compositions in large anthropogenically impacted Pearl River, South China.Ecotoxicol Environ Saf 2020; 191: 110229. [CrossRef] [PubMed] [Google Scholar]
  • Chen J, Hintelmann H, Zheng W, et al. Isotopic evidence for distinct sources of mercury in lake waters and sediments.Chem Geol 2016; 426: 33-44. [NASA ADS] [CrossRef] [Google Scholar]
  • National Geophysical Data Center. 2-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA. 2006. [Google Scholar]
  • Goudie A, Middleton N J. Desert Dust in the Global System. Berlin Heidelberg: Springer-Verlag, 2006. [Google Scholar]
  • Zhang Y, Jacob DJ, Horowitz HM, et al. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.Proc Natl Acad Sci USA 2016; 113: 526-531. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Selin NE, Jacob DJ, Yantosca RM, et al. Global 3-D land-ocean-atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition.Glob Biogeochem Cycle 2008; 22: GB2011. [NASA ADS] [Google Scholar]
  • Zhang Y, Jacob DJ, Dutkiewicz S, et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans.Glob Biogeochem Cycle 2015; 29: 854-864. [NASA ADS] [CrossRef] [Google Scholar]
  • Amos HM, Jacob DJ, Holmes CD, et al. Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition.Atmos Chem Phys 2012; 12: 591-603. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.