Open Access
Natl Sci Open
Volume 2, Number 1, 2023
Article Number 20220039
Number of page(s) 11
Section Chemistry
Published online 28 December 2022
  • Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019; 31: 1807916. [Article] [CrossRef] [Google Scholar]
  • Xu K, Sun H, Ruoko TP, et al. Ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Nat Mater 2020; 19: 738-744. [Article] [Google Scholar]
  • Liang Z, Zhang Y, Souri M, et al. Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers. J Mater Chem A 2018; 6: 16495-16505. [Article] [Google Scholar]
  • Zeng YJ, Wu D, Cao XH, et al. Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies. Adv Funct Mater 2020; 30: 1903873. [Article] [CrossRef] [Google Scholar]
  • Kim HS, Liu W, Chen G, et al. Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc Natl Acad Sci USA 2015; 112: 8205-8210. [Article] [Google Scholar]
  • Shuai Z, Geng H, Xu W, et al. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem Soc Rev 2014; 43: 2662. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Q, Sun Y, Xu W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 2014; 26: 6829-6851. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Huang D, Yao H, Cui Y, et al. Conjugated-backbone effect of organic small molecules for n-type thermoelectric materials with ZT over 0.2. J Am Chem Soc 2017; 139: 13013-13023. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Russ B, Glaudell A, Urban JJ, et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 2016; 1: 16050. [Article] [Google Scholar]
  • Cao XH, Zhou WX, Chen CY, et al. Excellent thermoelectric properties induced by different contact geometries in phenalenyl-based single-molecule devices. Sci Rep 2017; 7: 10842. [Article] [Google Scholar]
  • Reddy P, Jang SY, Segalman RA, et al. Thermoelectricity in molecular junctions. Science 2007; 315: 1568-1571. [Article] [Google Scholar]
  • Kiršanskas G, Li Q, Flensberg K, et al. Designing π-stacked molecular structures to control heat transport through molecular junctions. Appl Phys Lett 2014; 105: 233102. [Article] ArXiv: 1411.1775 [CrossRef] [Google Scholar]
  • Finch CM, García-Suárez VM, Lambert CJ. Giant thermopower and figure of merit in single-molecule devices. Phys Rev B 2009; 79: 033405. [Article] ArXiv: 0811.3029 [Google Scholar]
  • Zeier WG, Zevalkink A, Gibbs ZM, et al. Thinking like a chemist: Intuition in thermoelectric materials. Angew Chem Int Ed 2016; 55: 6826-6841. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li Y, Xiang L, Palma JL, et al. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat Commun 2016; 7: 11294. [Article] [Google Scholar]
  • Dell EJ, Capozzi B, Xia J, et al. Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes. Nat Chem 2015; 7: 209-214. [Article] [Google Scholar]
  • Gehring P, Thijssen JM, van der Zant HSJ. Single-molecule quantum-transport phenomena in break junctions. Nat Rev Phys 2019; 1: 381-396. [Article] [Google Scholar]
  • Aiba A, Demir F, Kaneko S, et al. Controlling the thermoelectric effect by mechanical manipulation of the electron’s quantum phase in atomic junctions. Sci Rep 2017; 7: 7949. [Article] ArXiv: 1708.05176 [Google Scholar]
  • Garner MH, Koerstz M, Jensen JH, et al. Substituent control of σ-interference effects in the transmission of saturated molecules. ACS Phys Chem Au 2022; 2: 282-288. [Article] [CrossRef] [Google Scholar]
  • Miao R, Xu H, Skripnik M, et al. Influence of quantum interference on the thermoelectric properties of molecular junctions. Nano Lett 2018; 18: 5666-5672. [Article] [Google Scholar]
  • Yee SK, Malen JA, Majumdar A, et al. Thermoelectricity in fullerene-metal heterojunctions. Nano Lett 2011; 11: 4089-4094. [Article] [Google Scholar]
  • Widawsky JR, Darancet P, Neaton JB, et al. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett 2012; 12: 354-358. [Article] ArXiv: 1201.1837 [Google Scholar]
  • Baheti K, Malen JA, Doak P, et al. Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett 2008; 8: 715-719. [Article] [Google Scholar]
  • Li X, Wu Q, Bai J, et al. Structure-independent conductance of thiophene-based single-stacking junctions. Angew Chem Int Ed 2020; 59: 3280-3286. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Evangeli C, Gillemot K, Leary E, et al. Engineering the thermopower of C60 molecular junctions. Nano Lett 2013; 13: 2141-2145. [Article] [Google Scholar]
  • Imahori H, Hasobe T, Yamada H, et al. Concentration effects of porphyrin monolayers on the structure and photoelectrochemical properties of mixed self-assembled monolayers of porphyrin and alkanethiol on gold electrodes. Langmuir 2001; 17: 4925-4931. [Article] [Google Scholar]
  • Nerngchamnong N, Yuan L, Qi DC, et al. The role of van der Waals forces in the performance of molecular diodes. Nat Nanotech 2013; 8: 113-118. [Article] [Google Scholar]
  • Romaner L, Heimel G, Zojer E. Electronic structure of thiol-bonded self-assembled monolayers: Impact of coverage. Phys Rev B 2008; 77: 045113. [Article] [Google Scholar]
  • Song H, Lee H, Lee T. Intermolecular chain-to-chain tunneling in metal-alkanethiol-metal junctions. J Am Chem Soc 2007; 129: 3806-3807. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Jalal Uddin M, Khalid Hossain M, Hossain MI, et al. Modeling of self-assembled monolayers (SAMs) of Octadecanethiol and Hexadecanethiol on gold (Au) and silver (Ag). Results Phys 2017; 7: 2289-2295. [Article] [Google Scholar]
  • Chen H, Sangtarash S, Li G, et al. Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives. Nanoscale 2020; 12: 15150-15156. [Article] [Google Scholar]
  • Xu B, Tao NJ. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003; 301: 1221-1223. [Article] [Google Scholar]
  • Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. J Heat Transfer 2001; 124: 329-337. [Article] [Google Scholar]
  • Grant JT. Methods for quantitative analysis in XPS and AES. Surf Interface Anal 1989; 14: 271-283. [Article] [Google Scholar]
  • Suroviec A. Determining surface coverage of self-assembled monolayers on gold electrodes. Chem Educator, 2012; 17: 83 [Google Scholar]
  • Heinze J, Bard AJ, Faulkner LF. Electrochemical Methods-Fundamentals and Applications. New York: John Wiley & Sons, Ltd., 1981 [Google Scholar]
  • Yu H, Li X, Gan X, et al. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement. J Micromech Microeng 2009; 19: 045023. [Article] [Google Scholar]
  • Paulsson M, Datta S. Thermoelectric effect in molecular electronics. Phys Rev B 2003; 67: 241403. [Article] ArXiv: cond-mat/0301232 [Google Scholar]
  • Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-n materials simulation. J Phys-Condens Matter 2002; 14: 2745-2779. [Article] ArXiv: cond-mat/0104182 [Google Scholar]
  • Ferrer J, Lambert CJ, García-Suárez VM, et al. Gollum: A next-generation simulation tool for electron, thermal and spin transport. New J Phys 2014; 16: 093029. [Article] ArXiv: 1502.04966 [Google Scholar]
  • Kashimoto Y, Yonezawa K, Meissner M, et al. The evolution of intermolecular energy bands of occupied and unoccupied molecular states in organic thin films. J Phys Chem C 2018; 122: 12090-12097. [Article] [Google Scholar]
  • Lambert CJ. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem Soc Rev 2015; 44: 875-888. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang X, Jiang B, Du C, et al. Fluorinated dithienyl-diketopyrrolopyrrole: a new building block for organic optoelectronic materials. New J Chem 2019; 43: 16411-16420. [Article] [Google Scholar]
  • Neaton JB, Hybertsen MS, Louie SG. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys Rev Lett 2006; 97: 216405. [Article] ArXiv: cond-mat/0606640 [Google Scholar]
  • Mueller CJ, Singh CR, Fried M, et al. High bulk electron mobility diketopyrrolopyrrole copolymers with perfluorothiophene. Adv Funct Mater 2015; 25: 2725-2736. [Article] [CrossRef] [Google Scholar]
  • Sonar P, Zhuo JM, Zhao LH, et al. Furan substituted diketopyrrolopyrrole and thienylenevinylene based low band gap copolymer for high mobility organic thin film transistors. J Mater Chem 2012; 22: 17284. [Article] [Google Scholar]
  • Carsten B, Szarko JM, Lu L, et al. Mediating solar cell performance by controlling the internal dipole change in organic photovoltaic polymers. Macromolecules 2012; 45: 6390-6395. [Article] [Google Scholar]
  • Haiss W, van Zalinge H, Higgins SJ, et al. Redox state dependence of single molecule conductivity. J Am Chem Soc 2003; 125: 15294-15295. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Perdew JP, Burke K, Ernzerhof M. Perdew, burke, and ernzerhof reply. Phys Rev Lett 1998; 80: 891. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.