Open Access
Natl Sci Open
Volume 2, Number 1, 2023
Article Number 20220043
Number of page(s) 17
Section Information Sciences
Published online 10 January 2023
  • Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yuan Y, Tang X, Zhou W, et al. Data driven discovery of cyber physical systems. Nat Commun 2019; 10: 4894. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yan L, Zhang HT, Goncalves J, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell 2020; 2: 283–288. [Article] [CrossRef] [Google Scholar]
  • Price Ii WN, Cohen IG. Privacy in the age of medical big data. Nat Med 2019; 25: 37–43. [Article] [CrossRef] [PubMed] [Google Scholar]
  • DeGrave AJ, Janizek JD, Lee SI. AI for radiographic COVID-19 detection selects shortcuts over signal. Nat Mach Intell 2021; 3: 610–619. [Article] [CrossRef] [Google Scholar]
  • Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 2021; 3: 199–217. [Article] [CrossRef] [Google Scholar]
  • Konečný J, McMahan B, Ramage D. Federated optimization: Distributed optimization beyond the datacenter. ArXiv: 1511.03575. [Google Scholar]
  • Yang Q, Liu Y, Chen T, et al. Federated machine learning. ACM Trans Intell Syst Technol 2019; 10: 1–19. [Article] [Google Scholar]
  • Konečný J, Brendan McMahan H, Yu FX, et al. Federated learning: Strategies for improving communication efficiency. ArXiv: 1610.05492. [Google Scholar]
  • McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, 2017, 54: 1273-1282. [Google Scholar]
  • Rizk E, Vlaski S, Sayed AH. Dynamic federated learning. ArXiv: 2002.08782. [Google Scholar]
  • Vlaski S, Rizk E, Sayed AH. Second-order guarantees in federated learning. In: Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, 2020, 915-922. [Google Scholar]
  • Bonawitz K, Eichner H, Grieskamp W, et al. Towards federated learning at scale: System design. ArXiv: 1902.01046. [Google Scholar]
  • Gu R, Yang S, Wu F. Distributed machine learning on mobile devices: A survey. ArXiv: 1909.08329. [Google Scholar]
  • Kairouz P, Brendan McMahan H, Avent B, et al. Advances and open problems in federated learning. ArXiv: 1912.04977. [Google Scholar]
  • Li T, Sahu AK, Talwalkar A, et al. Federated learning: Challenges, methods, and future directions. IEEE Signal Process Mag 2020; 37: 50–60. [Article] [NASA ADS] [Google Scholar]
  • Liu J, Huang J, Zhou Y, et al. From distributed machine learning to federated learning: a survey. Knowl Inf Syst 2022; 64: 885–917. [Article] [Google Scholar]
  • Bellet A, Guerraoui R, Taziki M, et al. Personalized and private peer-to-peer machine learning. ArXiv: 1705.08435. [Google Scholar]
  • Kaissis G, Ziller A, Passerat-Palmbach J, et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat Mach Intell 2021; 3: 473–484. [Article] [CrossRef] [Google Scholar]
  • Lian X, Zhang C, Zhang H, et al. Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent. In: Proceedings of 31th Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, 2017, 30: 5330-5340. [Google Scholar]
  • Tang Z, Shi S, Chu X. Communication-efficient decentralized learning with sparsification and adaptive peer selection. ArXiv: 2002.09692. [Google Scholar]
  • Wang S, Tuor T, Salonidis T, et al. Adaptive federated learning in resource constrained edge computing systems. IEEE J Sel Areas Commun 2019; 37: 1205–1221. [Article] [CrossRef] [Google Scholar]
  • Warnat-Herresthal S, Schultze H, Shastry KL, et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 2021; 594: 265–270. [Article] [Google Scholar]
  • Blot M, Picard D, Cord M, et al. Gossip training for deep learning. ArXiv: 1611.09726. [Google Scholar]
  • Daily JA, Vishnu A, Siegel CM, et al. Gossipgrad: Scalable deep learning using gossip communication based asynchronous gradient descent. ArXiv: 1803.05880. [Google Scholar]
  • Hu C, Jiang J, Wang Z. Decentralized federated learning: A segmented gossip approach. ArXiv: 1908.07782. [Google Scholar]
  • Scardapane S, Spinelli I, Lorenzo PD. Distributed training of graph convolutional networks. IEEE Trans Signal Inf Process over Networks 2021; 7: 87–100. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Pei Y, Mao R, Liu Y, et al. Decentralized federated graph neural networks. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), Montreal, 2021. [Google Scholar]
  • Lalitha A.Fully decentralized federated learning. In: Proceedings of Annual Conference on Neural Information Processing Systems (NeurIPS), Montreal, 2018. [Google Scholar]
  • Lalitha A, Kilinc OC, Javidi T, et al. Peer-to-peer federated learning on graphs. ArXiv: 1901.11173. [Google Scholar]
  • Pappas C, Chatzopoulos D, Lalis S, et al. Ipls: A framework for decentralized federated learning. In: Proceedings of 2021 IFIP Networking Conference, Espoo, 2021. [Google Scholar]
  • Savazzi S, Kianoush S, Rampa V, et al. A joint decentralized federated learning and communications framework for industrial networks. In: Proceedings of 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2020, 1-7. [Google Scholar]
  • Wu X, Wang Z, Zhao J, et al. FedBC: Blockchain-based decentralized federated learning. In: Proceedings of 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, 2020, 217-221. [Google Scholar]
  • Lyu L, Yu J, Nandakumar K, et al. Towards fair and privacy-preserving federated deep models. IEEE Trans Parallel Distrib Syst 2020; 31: 2524–2541. [Article] [CrossRef] [Google Scholar]
  • Yapp AZH, et al. Communication-efficient and scalable decentralized federated edge learning. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), Montreal, 2021. [Google Scholar]
  • Zhu L, Liu Z, Han S. Deep leakage from gradients. In: Proceedings Annual Conference on Neural Information Processing Systems (NeurIPS), Vancouver, 2019. [Google Scholar]
  • Koloskova A, Stich SU, Jaggi M. Decentralized stochastic optimization and gossip algorithms with compressed communication. ArXiv: 1902.00340. [Google Scholar]
  • Li X, Huang K, Yang W, et al. On the convergence of FedAvg on non-IID data. ArXiv: 1907.02189. [Google Scholar]
  • Olfati-Saber R, Murray RM. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat Contr 2004; 49: 1520–1533. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Ren W, Beard RW. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Automat Contr 2005; 50: 655–661. [Article] [CrossRef] [Google Scholar]
  • Jadbabaie A, Jie Lin A, Morse AS. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Contr 2003; 48: 988–1001. [Article] [Google Scholar]
  • Isermann R.Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Heidelberg: Springer Science & Business Media, 2005. [Google Scholar]
  • Yuan Y, Ma G, Cheng C, et al. A general end-to-end diagnosis framework for manufacturing systems. Natl Sci Rev 2020; 7: 418–429. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yang T, Yi X, Wu J, et al. A survey of distributed optimization. Annu Rev Control 2019; 47: 278–305. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • DeMillo RA.Foundations of secure computation. Technical Report. Georgia Institute of Technology, 1978. [Google Scholar]
  • Yao AC.Protocols for secure computations. In: Proceedings of 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), IEEE, Washington D C, 1982, 160-164. [Google Scholar]
  • Yu Y, Xie X. Privacy-preserving computation in the post-quantum era. Natl Sci Rev 2021; 8: nwab115. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Yu H, Yang Q. Threats to federated learning: A survey. ArXiv: 2003.02133. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.