Issue |
Natl Sci Open
Volume 2, Number 3, 2023
Special Topic: Glasses—Materials and Physics
|
|
---|---|---|
Article Number | 20220049 | |
Number of page(s) | 28 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20220049 | |
Published online | 25 April 2023 |
- Lan S, Ren Y, Wei XY, et al. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nat Commun 2017; 8: 14679. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Du Q, Liu X, Fan H, et al. Reentrant glass transition leading to ultrastable metallic glass. Mater Today 2020; 34: 66-77. [Article] [Google Scholar]
- Shen J, Lu Z, Wang JQ, et al. Metallic glacial glass formation by a first-order liquid-liquid transition. J Phys Chem Lett 2020; 11: 6718-6723. [Article] [CrossRef] [PubMed] [Google Scholar]
- Luan H, Zhang X, Ding H, et al. High-entropy induced a glass-to-glass transition in a metallic glass. Nat Commun 2022; 13: 2183. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Waseda Y. The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids. New York: McGraw-Hill International Book Co., 1980 [Google Scholar]
- Hufnagel TC. Finding order in disorder. Nat Mater 2004; 3: 666-667. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sheng HW, Luo WK, Alamgir FM, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006; 439: 419-425. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ma D, Stoica AD, Wang XL. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater 2009; 8: 30-34. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xing LQ, Eckert J, Löser W, et al. Crystallization behaviour and nanocrystalline microstructure evolution of a Zr57Cu20A110Ni8Ti5 bulk amorphous alloy. Philos Mag A 1999; 79: 1095-1108. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kulik T. Nanocrystallization of metallic glasses. J Non-Crystalline Solids 2001; 287: 145-161. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Murty BS, Hono K. Nanoquasicrystallization of Zr-based metallic glasses. Mater Sci Eng-A 2001; 312: 253-261. [Article] [CrossRef] [Google Scholar]
- Saida J, Matsubara E, Inoue A. Nanoquasicrystallization in metallic glasses. Mater Trans 2003; 44: 1971-1977. [Article] [CrossRef] [Google Scholar]
- Kim DH, Kim WT, Park ES, et al. Phase separation in metallic glasses. Prog Mater Sci 2013; 58: 1103-1172. [Article] [CrossRef] [Google Scholar]
- Ha A, Cohen I, Zhao X, et al. Supercooled liquids and polyamorphism. J Phys Chem 1996; 100: 1-4. [Article] [Google Scholar]
- Cohen I, Ha A, Zhao X, et al. A low-temperature amorphous phase in a fragile glass-forming substance. J Phys Chem 1996; 100: 8518-8526. [Article] [Google Scholar]
- Eckert T, Bartsch E. Re-entrant glass transition in a colloid-polymer mixture with depletion attractions. Phys Rev Lett 2002; 89: 125701. [Article] arxiv:cond-mat/0203513 [CrossRef] [PubMed] [Google Scholar]
- Chen SH, Chen WR, Mallamace F. The glass-to-glass transition and its end point in a copolymer micellar system. Science 2003; 300: 619-622. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Caiazzo A, Coniglio A, Nicodemi M. Glass-glass transition and new dynamical singularity points in an analytically solvable p-spin glasslike model. Phys Rev Lett 2004; 93: 215701. [Article] arxiv:cond-mat/0411550 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pham K N, Puertas A M, Bergenholtz J, et al. Multiple glassy states in a simple model system. Science 2002; 296: 104-106. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Atmuri AK, Peklaris GA, Kishore S, et al. A re-entrant glass transition in colloidal disks with adsorbing polymer. Soft Matter 2012; 8: 8965-8971. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sheng HW, Liu HZ, Cheng YQ, et al. Polyamorphism in a metallic glass. Nat Mater 2007; 6: 192-197. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zeng QS, Ding Y, Mao WL, et al. Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Phys Rev Lett 2010; 104: 105702. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lou H, Zeng Z, Zhang F, et al. Two-way tuning of structural order in metallic glasses. Nat Commun 2020; 11: 314. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Luo Q, Garbarino G, Sun BA,et al. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure. Nat Commun 2015; 6: 5703 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Li G, Wang YY, Liaw PK, et al. Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses. Phys Rev Lett 2012; 109: 125501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu M, Lou H, Tse JS, et al. Pressure-induced polyamorphism in a main-group metallic glass. Phys Rev B 2016; 94: 054201. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li L, Luo Q, Li R, et al. Polyamorphism in Yb-based metallic glass induced by pressure. Sci Rep 2017; 7: 46762. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Miltenburg K, Blok K. Calorimetric investigation of a new solid phase in triphenylphosphite. J Phys Chem 1996; 100: 16457-16459. [Article] [Google Scholar]
- Dvinskikh S, Benini G, Senker J, et al. Molecular motion in the two amorphous phases of triphenyl phosphite. J Phys Chem B 1999; 103: 1727-1737. [Article] [Google Scholar]
- Mizukami M, Kobashi K, Hanaya M, et al. Presence of two freezing-in processes concerning α-glass transition in the new liquid phase of triphenyl phosphite and its consistency with “cluster structure” and “intracluster rearrangement for α process” models. J Phys Chem B 1999; 103: 4078-4088. [Article] [Google Scholar]
- Wiedersich J, Kudlik A, Gottwald J, et al. On polyamorphism of triphenyl phosphite. J Phys Chem B 1997; 101: 5800-5803. [Article] [Google Scholar]
- Schiener B. Dielectric study of supercooled triphenylphosphite and butyronitrile: Comparison with a mesoscopic model. J Mol Liquids 1996; 69: 243-251. [Article] [CrossRef] [Google Scholar]
- Kurita R, Tanaka H. On the abundance and general nature of the liquid-liquid phase transition in molecular systems. J Phys: Condens Matter 2005; 17: 293−302 [Google Scholar]
- Kobayashi M, Tanaka H. The reversibility and first-order nature of liquid-liquid transition in a molecular liquid. Nat Commun 2016; 7: 13438. [Article] arxiv:1611.07157 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hédoux A, Hernandez O, Lefèbvre J, et al. Mesoscopic description of the glacial state in triphenyl phosphite from an X-ray diffraction experiment. Phys Rev B 1999; 60: 9390-9395. [Article] [CrossRef] [Google Scholar]
- Hédoux A, Guinet Y, Descamps M. Raman signature of polyamorphism in triphenyl phosphite. Phys Rev B 1998; 58: 31-34. [Article] [CrossRef] [Google Scholar]
- Hédoux A, Dore J, Guinet Y, et al. Analysis of the local order in the glacial state of triphenyl phosphite by neutron diffraction. Phys Chem Chem Phys 2002; 4: 5644-5648. [Article] [CrossRef] [Google Scholar]
- Hédoux A, Guinet Y, Descamps M. Size dependence of the Raman spectra in an amorphous-nanocrystalline mixed phase: the glacial state of triphenyl phosphite. J Raman Spectrosc 2001; 32: 677-688. [Article] [CrossRef] [Google Scholar]
- Hédoux A, Denicourt T, Guinet Y, et al. Conversion of the glacial state into the crystal in triphenyl phosphite. Solid State Commun 2002; 122: 373-378. [Article] [CrossRef] [Google Scholar]
- Hédoux A, Guinet Y, Foulon M, et al. Evidence for transient kinetics of nucleation as responsible for the isothermal transformation of supercooled liquid into the glacial state of triphenyl phosphite. J Chem Phys 2002; 116: 9374-9382. [Article] [CrossRef] [Google Scholar]
- Demirjian BG, Dosseh G, Chauty A, et al. Metastable solid phase at the crystalline-amorphous border: the glacial phase of triphenyl phosphite. J Phys Chem B 2001; 105: 2107-2116. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kivelson D, Tarjus G. Apparent polyamorphism and frustration. J Non-Crystalline Solids 2002; 307−310: 630−636 [CrossRef] [Google Scholar]
- Kurita R, Tanaka H. Critical-like phenomena associated with liquid-liquid transition in a molecular liquid. Science 2004; 306: 845-848. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tanaka H, Kurita R, Mataki H. Liquid-liquid transition in the molecular liquid triphenyl phosphite. Phys Rev Lett 2004; 92: 025701. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Favvas EP, Mitropoulos AC. What is spinodal decomposition?. JESTR 2008; 1: 25-27. [Article] [Google Scholar]
- Nishiyama N, Inoue A. Glass-forming ability of bulk Pd40Ni10Cu30P20 alloy. Mater Trans JIM 1996; 37: 1531-1539. [Article] [CrossRef] [Google Scholar]
- Puosi F, Pasturel A. Nucleation kinetics in a supercooled metallic glass former. Acta Mater 2019; 174: 387-397. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Neuber N, Gross O, Frey M, et al. On the thermodynamics and its connection to structure in the Pt-Pd-Cu-Ni-P bulk metallic glass forming system. Acta Mater 2021; 220: 117300. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Schroers J, Nguyen T, O’Keeffe S, et al. Thermoplastic forming of bulk metallic glass—Applications for MEMS and microstructure fabrication. Mater Sci Eng-A 2007; 449-451: 898-902. [Article] [Google Scholar]
- Park BJ, Chang HJ, Kim DH, et al. In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl Phys Lett 2004; 85: 6353-6355. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen L C, Spaepen F. Calorimetric evidence for the micro-quasicrystalline structure of “amorphous” Al/transition metal alloys. Nature 1988; 336: 366-368. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Zhang T, et al. Precipitation of icosahedral phase from a supercooled liquid region in Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Appl Phys Lett 1999; 75: 3497-3499. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yavari AR, Osamura K, Okuda H, et al. Small-angle X-ray scattering study of phase separation in amorphous alloys during heating with use of synchrotron radiation. Phys Rev B 1988; 37: 7759-7765. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cheng Q, Wang P F, Jiang H Y, et al. Effect of high-temperature up-quenching on stabilizing off-eutectic metallic glasses. Phys Rev B 2021; 103: 100203. [Article] [CrossRef] [Google Scholar]
- Glotzer S. Quasicrystals: the thrill of the chase. Nature 2019; 565: 156-158. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 1984; 53: 1951-1953. [Article] [Google Scholar]
- Levine D, Steinhardt PJ. Quasicrystals: a new class of ordered structures. Phys Rev Lett 1984; 53: 2477-2480. [Article] [Google Scholar]
- Liu S, Zhang H, Sun B, et al. Glassy or amorphous? A demonstration using G-phase copper containing a fivefold twinning structure. J Phys Chem Lett 2022; 13: 754-762. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Chen LC, Spaepen F, Robertson JL, et al. A structural and calorimetric study of the transformations in sputtered Al–Mn and Al–Mn–Si films. J Mater Res 1990; 5: 1871-1879. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tsai AP, Inoue A, Bizen Y, et al. Kinetics of the amorphous to icosahedral structure transition in Al-Cu-V and Al-Mn-Si alloys. Acta Metall 1989; 37: 1443-1449. [Article] [CrossRef] [Google Scholar]
- Inoue A, Bizen Y, Masumoto T. Quasicrystalline phase in Al-Si-Mn system prepared by annealing of amorphous phase. MTA 1988; 19: 383-385. [Article] [CrossRef] [Google Scholar]
- Matsubara E, Waseda Y, Tsai AP, et al. Anomalous X-ray scattering study of amorphous and icosahedral Al75Cu15V10 alloys. J Mater Sci 1990; 25: 2507-2512. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Holzer JC, Kelton KF. Kinetics of the amorphous to icosahedral phase transformation in Al-Cu-V alloys. Acta Metall Mater 1991; 39: 1833-1843. [Article] [CrossRef] [Google Scholar]
- Saha DK, Koga K, Takeo H. Stable icosahedral nanostructure in gold-copper alloy clusters. Nanostructured Mater 1997; 8: 1139-1147. [Article] [CrossRef] [Google Scholar]
- Lilienfeld DA, Nastasi M, Johnson HH, et al. Amorphous-to-quasicrystalline transformation in the solid state. Phys Rev Lett 1985; 55: 1587-1590. [Article] [Google Scholar]
- Robertson JL, Moss SC, Kreider KG. Comparison of amorphous and quasicrystalline films of sputtered Al0.72Mn0.22Si0.06. Phys Rev Lett 1988; 60: 2062-2065. [Article] [Google Scholar]
- Kofalt DD, Nanao S, Egami T, et al. Differential anomalous-X-ray-scattering study of icosahedral and amorphous Pd58.8U20.6Si20.6. Phys Rev Lett 1986; 57: 114-117. [Article] [Google Scholar]
- Shen Y, Poon SJ, Shiflet GJ. Crystallization of icosahedral phase from glassy Pd-U-Si alloys. Phys Rev B 1986; 34: 3516-3519. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Drehman AJ, Pelton AR, Noack MA. Nucleation and growth of quasicrystalline Pd–U–Si from the glassy state. J Mater Res 1986; 1: 741-745. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Poon SJ, Drehman AJ, Lawless KR. Glassy to icosahedral phase transformation in Pd-U-Si alloys. Phys Rev Lett 1985; 55: 2324-2327. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Antonione C, Battezzati L, Marino F, et al. Metastable phases in rapidly solidified Pd-U-Si alloys. J Less Common Met 1989; 154: 169-175. [Article] [Google Scholar]
- Bretscher H, Grütter P, Indlekofer G, et al. Physical properties of icosahedral and glassy Pd–U–Si alloys. Z Physik B-Condensed Matter 1987; 68: 313-324. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Eisenhammer T. Quasicrystal films: numerical optimization as a solar selective absorber. Thin Solid Films 1995; 270: 1-5. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Power J R, Farrell T, Gerber P, et al. Effect of adlayer dimer orientation on the optical anisotropy of single domain Si(001). Appl Phys Lett 1996; 69: 176-178. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Köster U, Meinhardt J, Roos S, et al. Formation of quasicrystals in bulk glass forming Zr-Cu-Ni-Al alloys. Mater Sci Eng-A 1997; 226-228: 995-998. [Article] [CrossRef] [Google Scholar]
- Fanfoni M, Tomellini M. The Johnson-Mehl-Avrami-Kohnogorov model: a brief review. Nouv Cim D 1998; 20: 1171-1182. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Transformation kinetics of nanoicosahedral phase from a supercooled liquid region in Zr70Pd30 binary glassy alloy. J Appl Phys 2000; 88: 6081-6083. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Inoue A, Zhang T, Chen MW, et al. RETRACTED—Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility. J Mater Res 2000; 15: 2195-2208. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lee JK, Choi G, Kim DH, et al. Formation of icosahedral phase from amorphous Zr65Al7.5Cu12.5Ni10Ag5 alloys. Appl Phys Lett 2000; 77: 978-980. [Article] [Google Scholar]
- Kelton KF, Lee GW, Gangopadhyay AK, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett 2003; 90: 195504. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xing LQ, Eckert J, Löser W, et al. Effect of cooling rate on the precipitation of quasicrystals from the Zr–Cu–Al–Ni–Ti amorphous alloy. Appl Phys Lett 1998; 73: 2110-2112. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kühn U, Eckert J, Mattern N, et al. As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Appl Phys Lett 2000; 77: 3176-3178. [Article] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Precipitation of an icosahedral quasicrystal phase in Zr70Pd20Ni10 amorphous alloy. Mater Trans JIM 2000; 41: 543-546. [Article] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Nanoicosahedral quasicrystalline phase in Zr–Pd and Zr–Pt binary alloys. J Appl Phys 2001; 90: 4717-4724. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Inoue A. Icosahedral quasicrystalline phase formation in Zr-Al-Ni-Cu glassy alloys by addition of Nb, Ta and V elements. J Phys-Condens Matter 2001; 13: L73-L78. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Nano icosahedral quasicrystals in Zr-based glassy alloys. Intermetallics 2002; 10: 1089-1098. [Article] [CrossRef] [Google Scholar]
- Kurtuldu G, Shamlaye KF, Löffler JF. Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid. Proc Natl Acad Sci USA 2018; 115: 6123-6128. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Molokanov VV, Chebotnikov VN. Quasicrystals and amorphous alloys in Ti-Zr-Ni system: glassforming ability, structure and properties. J Non-Crystalline Solids 1990; 117-118: 789-792. [Article] [CrossRef] [Google Scholar]
- Murty BS, Ping DH, Hono K, et al. Icosahedral phase formation by the primary crystallization of a Zr-Cu-Pd metallic glass. Scripta Mater 2000; 43: 103-107. [Article] [Google Scholar]
- Li C, Saida J, Matsushita M, et al. Precipitation of icosahedral quasicrystalline phase in Hf65Al7.5Ni10Cu12.5Pd5 metallic glass. Appl Phys Lett 2000; 77: 528-530. [Article] [Google Scholar]
- Saida J, Inoue A. Quasicrystals from glass devitrification. J Non-Crystalline Solids 2003; 317: 97-105. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Li C, Matsushita M, et al. Investigation of the stability of glassy state in the Zr- and Hf-based glassy alloys correlated with their transformation behavior. J Mater Res 2001; 16: 3389-3401. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wanderka N, Macht MP, Seidel M, et al. Formation of quasicrystals in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass. Appl Phys Lett 2000; 77: 3935-3937. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xing LQ, Hufnagel TC, Eckert J, et al. Relation between short-range order and crystallization behavior in Zr-based amorphous alloys. Appl Phys Lett 2000; 77: 1970-1972. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Louzguine DV, Inoue A. Formation of a nanoquasicrystalline phase in Zr–Cu–Ti–Ni metallic glass. Appl Phys Lett 2001; 78: 1841-1843. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xing LQ, Eckert J, Löser W, et al. High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Appl Phys Lett 1999; 74: 664-666. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Murty BS, Ping DH, Hono K, et al. Direct evidence for oxygen stabilization of icosahedral phase during crystallization of Zr65Cu27.5Al7.5 metallic glass. Appl Phys Lett 2000; 76: 55-57. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Murty BS, Ping DH, Hono K, et al. Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater 2000; 48: 3985-3996. [Article] [CrossRef] [Google Scholar]
- Eckert J, Mattern N, Zinkevitch M, et al. Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen. Mater Trans JIM 1998; 39: 623-632. [Article] [Google Scholar]
- Saida J, Matsushita M, Li C, et al. Effects of Ag and Pd on the nucleation and growth of the nano-icosahedral phase in Zr65Al7.5Ni10Cu7.5M10 (M = Ag or Pd) metallic glasses. Philos Mag Lett 2000; 80: 737-743. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Inoue A, Zhang T, Saida J, et al. Formation of icosahedral quasicrystalline phase in Zr-Al-Ni-Cu-M (M=Ag, Pd, Au or Pt) systems. Mater Trans JIM 1999; 40: 1181-1184. [Article] [Google Scholar]
- Ishihara S, Inoue A. Superplastic deformation of supercooled liquid in Zr-based bulk glassy alloys containing nano-quasicrystalline particles. Mater Trans 2001; 42: 1517-1522. [Article] [Google Scholar]
- Chen MW, Zhang T, Inoue A, et al. Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl Phys Lett 1999; 75: 1697-1699. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Inoue A. Effect of Mo addition on the formation of metastable fcc Zr2Ni and icosahedral phases in Zr-Al-Ni-Cu glassy alloy. Jpn J Appl Phys 2001; 40: L769-L772. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Transformation in the initial crystallization stage of Zr–Al–Ni–Cu glassy alloys made with low oxygen concentrations. J Non-Crystalline Solids 2002; 312-314: 617-621. [Article] [CrossRef] [Google Scholar]
- Inoue A, Zhang T, Saida J, et al. High strength and good ductility of bulk quasicrystalline base alloys in Zr65Al7.5Ni10Cu17.5−xPdx system. Mater Trans JIM 1999; 40: 1137-1143. [Article] [Google Scholar]
- Saida J, Inoue A. Icosahedral quasicrystalline phase formation in Zr–Al–Ni–Cu glassy alloys by the addition of V, Nb and Ta. J Non-Crystalline Solids 2002; 312-314: 502-507. [Article] [CrossRef] [Google Scholar]
- Jiang JZ, Zhuang YX, Rasmussen H, et al. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure. Phys Rev B 2001; 64: 094208. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jiang JZ, Rasmussen AR, Jensen CH, et al. Change of quasilattice constant during amorphous-to-quasicrystalline phase transformation in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass. Appl Phys Lett 2002; 80: 2090-2092. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Nucleation and grain growth kinetics of nano icosahedral quasicrystalline phase in Zr65Al7.5Ni10Cu17.5−xPdx (x=5, 10 and 17.5) glassy alloys. Mater Trans JIM 2000; 41: 1505-1510. [Article] [CrossRef] [Google Scholar]
- Chen MW, Inoue A, Sakurai T, et al. Impurity oxygen redistribution in a nanocrystallized Zr65Cr15Al10Pd10 metallic glass. Appl Phys Lett 1999; 74: 812-814. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jiang JZ, Saksl K, Saida J, et al. Evidence of polymorphous amorphous-to-quasicrystalline phase transformation in Zr66.7Pd33.3 metallic glass. Appl Phys Lett 2002; 80: 781-783. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy. Appl Phys Lett 2001; 79: 412-414. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Nano icosahedral phase in Zr–Pd and Zr–Pt binary alloys. J. Alloys Compd 2002; 342: 18-23. [Article] [Google Scholar]
- Kitada M, Imafuku M, Saida J, et al. Structural study of quasicrystallization in Zr–NM (NM=Pd or Pt) metallic glasses. J Non-Crystalline Solids 2002; 312‒314: 594-598. [Article] [Google Scholar]
- Murty BS, Ping DH, Hono K. Nanoquasicrystallization of binary Zr–Pd metallic glasses. Appl Phys Lett 2000; 77: 1102-1104. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen HS. Glass temperature, formation and stability of Fe, Co, Ni, Pd and Pt based glasses. Mater Sci Eng 1976; 23: 151-154. [Article] [CrossRef] [Google Scholar]
- Schluckebier G, Predel B. Investigation on separation and crystallization behavior of metallic glasses of the system palladium-nickel-phosphorus. Z Metallkd, 1983; 74: 569−576 [Google Scholar]
- Lan S, Lau MT, Kui HW. The time constant of the spinodal decomposition in Pd41.75Ni41.75P17.5 bulk metallic glasses. J Non-Crystalline Solids 2013; 361: 1-8. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lan S, Yip YL, Lau MT, et al. Direct imaging of phase separation in Pd41.25Ni41.25P17.5 bulk metallic glasses. J Non-Crystalline Solids 2012; 358: 1298-1302. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lau MT, Lan S, Yip YL, et al. A metastable liquid state miscibility gap in undercooled Pd–Ni–P melts. J Non-Crystalline Solids 2012; 358: 2667-2673. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yavari AR, Hamar-Thibault S, Sinning HR. On the microstructure of amorphous Pd46Ni36P18 with two glass transitions. Scripta Metall 1988; 22: 1231-1234. [Article] [Google Scholar]
- Tian N, Ohnuma M, Ohkubo T, et al. Primary crystallization of an Al88Gd6Er2Ni4 metallic glass. Mater Trans 2005; 46: 2880-2885. [Article] [Google Scholar]
- Cheng YQ, Ma E. Atomic-level structure and structure–property relationship in metallic glasses. Prog Mater Sci 2011; 56: 379-473. [Article] [CrossRef] [Google Scholar]
- Lan S, Zhu L, Wu Z, et al. A medium-range structure motif linking amorphous and crystalline states. Nat Mater 2021; 20: 1347-1352. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pogatscher S, Leutenegger D, Schawe J E K, et al. Solid-solid phase transitions via melting in metals. Nat Commun 2016; 7: 11113. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- An Q, Johnson WL, Samwer K, et al. First-order phase transition in liquid Ag to the heterogeneous G-phase. J Phys Chem Lett 2020; 11: 632-645. [Article] [Google Scholar]
- An Q, Johnson WL, Samwer K, et al. Formation of two glass phases in binary Cu-Ag liquid. Acta Mater 2020; 195: 274-281. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- An Q, Johnson WL, Samwer K, et al. The first order L-G phase transition in liquid Ag and Ag-Cu alloys is driven by deviatoric strain. Scripta Mater 2021; 194: 113695. [Article] [CrossRef] [Google Scholar]
- Derlet PM, Maaß R. Emergent structural length scales in a model binary glass—The micro-second molecular dynamics time-scale regime. J Alloys Compd 2020; 821: 153209. [Article] [Google Scholar]
- Shen J, Sun YH, Orava J, et al. Liquid-to-liquid transition around the glass-transition temperature in a glass-forming metallic liquid. Acta Mater 2022; 225: 117588. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang X, Gong P, Deng L, et al. Sub-Tg annealing effect on the kinetics of glass transition and crystallization for a Ti-Zr-Be-Fe bulk metallic glass. J Non-Crystalline Solids 2017; 473: 132-140. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ke HB, Zhao ZF, Wen P, et al. Specific heat in a typical metallic glass former. Chin Phys Lett 2012; 29: 046402. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Schawe JEK, Löffler JF. Existence of multiple critical cooling rates which generate different types of monolithic metallic glass. Nat Commun 2019; 10: 1337. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang N, Ding J, Luo P, et al. Chemical variation induced nanoscale spatial heterogeneity in metallic glasses. Mater Res Lett 2018; 6: 655-661. [Article] [CrossRef] [Google Scholar]
- Silveyra JM, Ferrara E, Huber DL, et al. Soft magnetic materials for a sustainable and electrified world. Science 2018; 362: eaa0195. [Article] [CrossRef] [Google Scholar]
- Pauly S, Gorantla S, Wang G, et al. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater 2010; 9: 473-477. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 2012; 57: 487-656. [Article] [CrossRef] [Google Scholar]
- Meylan CM, Papparotto F, Nachum S, et al. Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling. J Non-Crystalline Solids 2020; 548: 120299. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Song M, Li Y, Wu Z, et al. The effect of annealing on the mechanical properties of a ZrAlNiCu metallic glass. J Non-Crystalline Solids 2011; 357: 1239-1241. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Inoue A, Fan C, Saida J, et al. High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles. Sci Tech Adv Mater 2000; 1: 73-86. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Haruyama O, Kimura H, Nishiyama N, et al. Change in electron transport property after glass transition in several Pd-based metallic glasses. J Non-Crystalline Solids 1999; 250-252: 781-785. [Article] [CrossRef] [Google Scholar]
- Singh S, Ediger MD, de Pablo JJ. Ultrastable glasses from in silico vapour deposition. Nat Mater 2013; 12: 139-144. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schawe JEK, Löffler JF. Kinetics of structure formation in the vicinity of the glass transition. Acta Mater 2022; 226: 117630. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Swallen SF, Kearns KL, Mapes MK, et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 2007; 315: 353-356. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Luo P, Cao CR, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates. Nat Commun 2018; 9: 1389. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Vila-Costa A, Ràfols-Ribé J, González-Silveira M, et al. Nucleation and growth of the supercooled liquid phase control glass transition in bulk ultrastable glasses. Phys Rev Lett 2020; 124: 076002. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mallamace F. The liquid water polymorphism. Proc Natl Acad Sci USA 2009; 106: 15097-15098. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ryu CW, Dmowski W, Kelton KF, et al. Curie-Weiss behavior of liquid structure and ideal glass state. Sci Rep 2019; 9: 18579. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Frank F. Supercooling of liquids. Proc R Soc London A, 1952; 215: 43–46 [Google Scholar]
- Guan PF, Fujita T, Hirata A, et al. Structural origins of the excellent glass forming ability of Pd40Ni40P20. Phys Rev Lett 2012; 108: 175501. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ding J, Cheng YQ, Ma E. Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid. Acta Mater 2014; 69: 343-354. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Derlet PM, Maaß R. Micro-plasticity in a fragile model binary glass. Acta Mater 2021; 209: 116771. [Article] arxiv:2011.02704 [NASA ADS] [CrossRef] [Google Scholar]
- Ma E. Tuning order in disorder. Nat Mater 2015; 14: 547-552. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hirata A, Kang LJ, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses. Science 2013; 341: 376-379. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lin Z, Youshi W, Xiufang B, et al. Origin of the prepeak in the structure factors of liquid and amorphous Al-Fe-Ce alloys. J. Phys.-Condens Matter 1999; 11: 7959-7969. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Holland-Moritz D, Schroers J, Herlach DM, et al. Undercooling and solidification behaviour of melts of the quasicrystal-forming alloysAl–Cu–Fe and Al–Cu–Co. Acta Mater 1998; 46: 1601-1615. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Holland-Moritz D, Herlach DM, Urban K. Observation of the undercoolability of quasicrystal-forming alloys by electromagnetic levitation. Phys Rev Lett 1993; 71: 1196-1199. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yi S, Kim DH. Stability and phase transformation of icosahedral phase in a Zr41.5Ti41.5Ni17 alloy. J Mater Res 2000; 15: 892−897 [NASA ADS] [CrossRef] [Google Scholar]
- Kelton KF, Kim WJ, Stroud RM. A stable Ti-based quasicrystal. Appl Phys Lett 1997; 70: 3230-3232. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Huett VT, Kelton KF. Formation and hydrogen adsorption properties of Ti-Hf-Ni quasicrystals and crystal approximants. Philos Mag Lett 2002; 82: 191-198. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saksl K, Franz H, Jóvári P, et al. Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses. Appl Phys Lett 2003; 83: 3924-3926. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Huett VT, Kelton KF. Formation and crystallization of Ti–Hf–Ni metallic glasses. Appl Phys Lett 2002; 81: 1026-1028. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li C, Saida J, Matsushita M, et al. Precipitation of an icosahedral quasicrystalline phase in Hf59Ni8Cu20Al10Ti3 metallic glass. Philos Mag Lett 2000; 80: 621-626. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saida J, Matsushita M, Inoue A. Structural change from amorphous to nano icosahedral quasicrystalline phase with quenching rate in Zr-Pt binary alloy. Mater Trans 2001; 42: 1103-1108. [Article] [CrossRef] [Google Scholar]
- Park ES, Chang HJ, Kim DH. Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu–Zr bulk metallic glasses. Acta Mater 2008; 56: 3120-3131. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kündig AA, Ohnuma M, Ping DH, et al. In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater 2004; 52: 2441-2448. [Article] [CrossRef] [Google Scholar]
- Mattern N, Kühn U, Gebert A, et al. Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Mater 2005; 53: 271-274. [Article] [CrossRef] [Google Scholar]
- Oehring M, Haasen P. FIM-ATOM probe studies of the decomposition in the metallic glass Ni45Pd35P20. J Phys Colloq, 1986; 47: C7275−C7280 [Google Scholar]
- Boswell PG. Crystallisation of A (Ni5Pd5)82P18 amorphous alloy. Scripta Metall 1977; 11: 701-707. [Article] [CrossRef] [Google Scholar]
- Willmann N, Mader W, Wachtel E, et al. Decomposition and crystallization behaviour of the amorphous Ni39Pd43P18 and Ni37Pd45P18 alloys. Phys Stat Sol (a) 1987; 104: 369-379. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Peter Chou CP, Turnbull D. Transformation behavior of Pd–Au–Si metallic glasses. J Non-Crystalline Solids 1975; 17: 169-188. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen HS, Turnbull D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall 1969; 17: 1021-1031. [Article] [CrossRef] [Google Scholar]
- Park BJ, Chang HJ, Kim DH, et al. Phase separating bulk metallic glass: a hierarchical composite. Phys Rev Lett 2006; 96: 245503. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tanner LE, Ray R. Phase separation in Zr–Ti–Be metallic glasses. Scripta Metall 1980; 14: 657-662. [Article] [Google Scholar]
- Zhang T, Inoue A, Chen S, et al. Amorphous (Zr-Y)60Al15Ni25 alloys with two supercooled liquid regions. Mater Trans JIM 1992; 33: 143-145. [Article] [Google Scholar]
- Ngai HW, Leung CC, Guo WH, et al. Crystallization kinetics of amorphous nanostructured Pd40.5Ni40.5P19 alloys. J Mater Res 2001; 16: 797-802. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Madge SV, Rösner H, Wilde G. Transformations in supercooled Pd40.5Ni40.5P19. Scripta Mater 2005; 53: 1147-1151. [Article] [CrossRef] [Google Scholar]
- Nagahama D. Crystallization of Ti36Zr24Be40 metallic glass. Scripta Mater 2003; 49: 729-734. [Article] [CrossRef] [Google Scholar]
- Park ES, Na JH, Kim DH. Abnormal behavior of supercooled liquid region in bulk-forming metallic glasses. J Appl Phys 2010; 108: 053515. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zheng H, Lv Y, Sun Q, et al. Thermodynamic evidence for cluster ordering in Cu46Zr42Al7Y5 ribbons during glass transition. Sci Bull 2016; 61: 706-713. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Park ES, Ohnuma M, Kim DH. Anomalous glass transition behavior in Cu–Zr–Sn alloy system. J Alloys Compd 2011; 509: S52-S55. [Article] [Google Scholar]
- Li J, Yang W, Estévez D, et al. Thermal stability, magnetic and mechanical properties of Fe–Dy–B–Nb bulk metallic glasses with high glass-forming ability. Intermetallics 2014; 46: 85-90. [Article] [CrossRef] [Google Scholar]
- Li J, Men H, Shen B. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability. AIP Adv 2011; 1: 042110. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lee S, Kato H, Kubota T, et al. Excellent thermal stability and bulk glass forming ability of Fe–B–Nb–Y soft magnetic metallic glass. Mater Trans 2008; 49: 506-512. [Article] [Google Scholar]
- Huang XM, Wang XD, He Y, et al. Are there two glass transitions in Fe–M–Y–B (M = Mo, W, Nb) bulk metallic glasses?. Scripta Mater 2009; 60: 152-155. [Article] [Google Scholar]
- Read HG, Mono K, Tsai A P, et al. Preliminary atom probe studies of PdNi(Cu)P supercooled liquids. Mater Sci Eng-A 1997; 226-228: 453-457. [Article] [CrossRef] [Google Scholar]
- Kumar G, Nagahama D, Ohnuma M, et al. Structural evolution in the supercooled liquid of Zr36Ti24Be40 metallic glass. Scripta Mater 2006; 54: 801-805. [Article] [CrossRef] [Google Scholar]
- Cao YH, Du Q, Liu XJ, et al. Unravel unusual hardening behavior of a Pd–Ni–P metallic glass in its supercooled liquid region. Appl Phys Lett 2021; 118: 121902. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Al-Mukadam R, Götz IK, Stolpe M, et al. Viscosity of metallic glass-forming liquids based on Zr by fast-scanning calorimetry. Acta Mater 2021; 221: 117370. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun Y, Concustell A, Greer AL. Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nat Rev Mater 2016; 1: 16039. [Article] [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.