Open Access
Review
Issue |
Natl Sci Open
Volume 2, Number 4, 2023
|
|
---|---|---|
Article Number | 20220050 | |
Number of page(s) | 39 | |
Section | Earth and Environmental Sciences | |
DOI | https://doi.org/10.1360/nso/20220050 | |
Published online | 07 April 2023 |
- Xu Z, Wu Y, Shen F, et al. Bioaerosol science, technology, and engineering: past, present, and future. Aerosol Sci Tech 2011; 45: 1337-1349. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fröhlich-Nowoisky J, Kampf CJ, Weber B, et al. Bioaerosols in the Earth system: climate, health, and ecosystem interactions. Atmos Res 2016; 182: 346-376. [Article] [CrossRef] [Google Scholar]
- Stern RA, Mahmoudi N, Buckee CO, et al. The microbiome of size-fractionated airborne particles from the Sahara region. Environ Sci Technol 2021; 55: 1487-1496. [Article] [Google Scholar]
- Shen F, Zheng Y, Niu M, et al. Characteristics of biological particulate matters at urban and rural sites in the North China Plain. Environ Pollut 2019; 253: 569-577. [Article] [Google Scholar]
- Zawadowicz MA, Froyd KD, Perring AE, et al. Model-measurement consistency and limits of bioaerosol abundance over the continental United States. Atmos Chem Phys 2019; 19: 13859-13870. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xu C, Wei M, Chen J, et al. Fungi diversity in PM2. 5 and PM1 at the summit of Mt. Tai: abundance, size distribution, and seasonal variation. Atmos Chem Phys 2017; 17: 11247-11260. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hu W, Murata K, Fan C, et al. Abundance and viability of particle-attached and free-floating bacteria in dusty and nondusty air. Biogeosciences 2020; 17: 4477-4487. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Prass M, Andreae MO, de Araùjo AC, et al. Bioaerosols in the Amazon rain forest: temporal variations and vertical profiles of Eukarya, Bacteria, and Archaea. Biogeosciences 2021; 18: 4873-4887. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xie J, Jin L, He T, et al. Bacteria and antibiotic resistance genes (ARGs) in PM2.5 from China: implications for human exposure. Environ Sci Technol 2019; 53: 963-972. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tignat-Perrier R, Dommergue A, Thollot A, et al. Seasonal shift in airborne microbial communities. Sci Total Environ 2020; 716: 137129. [Article] [CrossRef] [PubMed] [Google Scholar]
- Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 2019; 17: 247-260. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao J, Jin L, Wu D, et al. Global airborne bacterial community—interactions with Earth’s microbiomes and anthropogenic activities. Proc Natl Acad Sci USA 2022; 119: e2204465119. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou F, Niu M, Zheng Y, et al. Impact of outdoor air on indoor airborne microbiome under hazy air pollution: a case study in winter Beijing. J Aerosol Sci 2021; 156: 105798. [Article] [CrossRef] [Google Scholar]
- Janssen RHH, Heald CL, Steiner AL, et al. Drivers of the fungal spore bioaerosol budget: observational analysis and global modeling. Atmos Chem Phys 2021; 21: 4381-4401. [Article] [CrossRef] [Google Scholar]
- Yttri KE, Canonaco F, Eckhardt S, et al. Trends, composition, and sources of carbonaceous aerosol at the Birkenes Observatory, northern Europe, 2001–2018. Atmos Chem Phys 2021; 21: 7149-7170. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li W, Yang J, Zhang D, et al. Concentration and community of airborne bacteria in response to cyclical haze events during the fall and midwinter in Beijing, China. Front Microbiol 2018; 9: 1741. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ji L, Zhang Q, Fu X, et al. Feedback of airborne bacterial consortia to haze pollution with different PM2.5 levels in typical mountainous terrain of Jinan, China. Sci Total Environ 2019; 695: 133912. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun X, Li D, Li B, et al. Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. J Hazard Mater 2020; 398: 122984. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wei M, Liu H, Chen J, et al. Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. Environ Pollut 2020; 262: 114188. [Article] [Google Scholar]
- Bai W, Li Y, Xie W, et al. Vertical variations in the concentration and community structure of airborne microbes in PM2.5. Sci Total Environ 2021; 760: 143396. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yoo K, Han I, Ko KS, et al. Bacillus-dominant airborne bacterial communities identified during Asian dust events. Microb Ecol 2019; 78: 677-687. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tignat-Perrier R, Dommergue A, Thollot A, et al. Author correction: global airborne microbial communities controlled by surrounding landscapes and wind conditions. Sci Rep 2020; 10: 14441. [Article] [CrossRef] [PubMed] [Google Scholar]
- Šantl-Temkiv T, Gosewinkel U, Starnawski P, et al. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 2018; 94: fiy031. [Article] [Google Scholar]
- Cao Y, Yu X, Ju F, et al. Airborne bacterial community diversity, source and function along the Antarctic Coast. Sci Total Environ 2021; 765: 142700. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wei M, Xu C, Xu X, et al. Size distribution of bioaerosols from biomass burning emissions: characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicol Environ Saf 2019; 171: 37-46. [Article] [CrossRef] [PubMed] [Google Scholar]
- Uetake J, Tobo Y, Kobayashi S, et al. Visualization of the seasonal shift of a variety of airborne pollens in western Tokyo. Sci Total Environ 2021; 788: 147623. [Article] [CrossRef] [PubMed] [Google Scholar]
- López-Orozco R, García-Mozo H, Oteros J, et al. Long-term trends in atmospheric Quercus pollen related to climate change in southern Spain: a 25-year perspective. Atmos Environ 2021; 262: 118637. [Article] [CrossRef] [Google Scholar]
- Klimczak LJ, Ebner von Eschenbach C, Thompson PM, et al. Mixture analyses of air-sampled pollen extracts can accurately differentiate pollen taxa. Atmos Environ 2020; 243: 117746. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kremenska L, Rodinkova V, Bobrowska O, et al. Correspondence between tree pollen emissions sources and pollen content of the ambient air. Aerobiologia 2019; 35: 511-521. [Article] [CrossRef] [Google Scholar]
- Hughes DD, Mampage CBA, Jones LM, et al. Characterization of atmospheric pollen fragments during springtime thunderstorms. Environ Sci Technol Lett 2020; 7: 409-414. [Article] [Google Scholar]
- Hamda S H, Ben Dhiab A, Galán C, et al. Pollen spectrum in northern Tunis, Tunisia. Aerobiologia 2017; 33: 243-251. [Article] [CrossRef] [Google Scholar]
- Campbell BC, Al Kouba J, Timbrell V, et al. Tracking seasonal changes in diversity of pollen allergen exposure: targeted metabarcoding of a subtropical aerobiome. Sci Total Environ 2020; 747: 141189. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gusareva ES, Acerbi E, Lau KJX, et al. Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proc Natl Acad Sci USA 2019; 116: 23299-23308. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Verma SK, Kawamura K, Chen J, et al. Thirteen years of observations on primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific. Atmos Chem Phys 2018; 18: 81-101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Anderegg WRL, Abatzoglou JT, Anderegg LDL, et al. Anthropogenic climate change is worsening North American pollen seasons. Proc Natl Acad Sci USA 2021; 118: e2013284118. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ziska LH, Makra L, Harry SK, et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. Lancet Planet Health 2019; 3: e124-e131. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tipton L, Zahn G, Datlof E, et al. Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. Proc Natl Acad Sci USA 2019; 116: 25728-25733. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cáliz J, Triadó-Margarit X, Camarero L, et al. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc Natl Acad Sci USA 2018; 115: 12229-12234. [Article] [CrossRef] [PubMed] [Google Scholar]
- Whitehead JD, Darbyshire E, Brito J, et al. Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season. Atmos Chem Phys 2016; 16: 9727-9743. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen Y, Gebert MJ, Faith SA, et al. Global patterns and climatic controls of dust-associated microbial communities. Microbiol Spectr 2021; 9: e0144721 [CrossRef] [PubMed] [Google Scholar]
- Liu H, Hu Z, Zhou M, et al. The distribution variance of airborne microorganisms in urban and rural environments. Environ Pollut 2019; 247: 898-906. [Article] [Google Scholar]
- Li H, Wu ZF, Yang XR, et al. Urban greenness and plant species are key factors in shaping air microbiomes and reducing airborne pathogens. Environ Int 2021; 153: 106539. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yue S, Ren H, Fan S, et al. High abundance of fluorescent biological aerosol particles in winter in Beijing, China. ACS Earth Space Chem 2017; 1: 493-502. [Article] [Google Scholar]
- Stewart JD, Shakya KM, Bilinski T, et al. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci Total Environ 2020; 724: 138353. [Article] [CrossRef] [PubMed] [Google Scholar]
- Drautz-Moses DI, Luhung I, Gusareva ES, et al. Vertical stratification of the air microbiome in the lower troposphere. Proc Natl Acad Sci USA 2022; 119: 2117293119. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bryan NC, Christner BC, Guzik TG, et al. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J 2019; 13: 2789-2799. [Article] [CrossRef] [PubMed] [Google Scholar]
- Smith DJ, Ravichandar JD, Jain S, et al. Airborne bacteria in Earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA aircraft bioaerosol collector (ABC). Front Microbiol 2018; 9: 1752. [Article] [Google Scholar]
- Robinson JM, Cando-Dumancela C, Liddicoat C, et al. Vertical stratification in urban green space aerobiomes. Environ Health Perspect 2020; 128: 117008. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology?. Microbiol Mol Biol Rev 2017; 81: 10.1128. [Article] [CrossRef] [Google Scholar]
- Zhou Y, Lai Y, Tong X, et al. Airborne bacteria in outdoor air and air of mechanically ventilated buildings at city scale in Hong Kong across Seasons. Environ Sci Technol 2020; 54: 11732-11743. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Niu M, Zhou F, Yang Y, et al. Abundance and composition of airborne archaea during springtime mixed dust and haze periods in Beijing, China. Sci Total Environ 2021; 752: 141641. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Flies EJ, Clarke LJ, Brook BW, et al. Urbanisation reduces the abundance and diversity of airborne microbes–but what does that mean for our health? A systematic review. Sci Total Environ 2020; 738: 140337. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xie W, Li Y, Bai W, et al. The source and transport of bioaerosols in the air: a review. Front Environ Sci Eng 2021; 15: 44. [Article] [Google Scholar]
- Oneto DL, Golan J, Mazzino A, et al. Timing of fungal spore release dictates survival during atmospheric transport. Proc Natl Acad Sci USA 2020; 117: 5134-5143. [Article]arxiv:1904.01119 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Daly SM, O’Connor DJ, Healy DA, et al. Investigation of coastal sea-fog formation using the WIBS (wideband integrated bioaerosol sensor) technique. Atmos Chem Phys 2019; 19: 5737-5751. [Article] [CrossRef] [Google Scholar]
- China S, Wang B, Weis J, et al. Rupturing of biological spores as a source of secondary particles in Amazonia. Environ Sci Technol 2016; 50: 12179-12186. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lawler MJ, Draper DC, Smith JN. Atmospheric fungal nanoparticle bursts. Sci Adv 2020; 6: eaax9051. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Moran-Zuloaga D, Ditas F, Walter D, et al. Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmos Chem Phys 2018; 18: 10055-10088. [Article] [CrossRef] [Google Scholar]
- Miner KR, D’Andrilli J, Mackelprang R, et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat Clim Chang 2021; 11: 809-819. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Qi J, Ji M, Wang W, et al. Effect of Indian monsoon on the glacial airborne bacteria over the Tibetan Plateau. Sci Total Environ 2022; 831: 154980. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jiang X, Rotily L, Villermaux E, et al. Submicron drops from flapping bursting bubbles. Proc Natl Acad Sci USA 2022; 119: e2112924119. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sauer JS, Mayer KJ, Lee C, et al. The sea spray chemistry and particle evolution study (SeaSCAPE): overview and experimental methods. Environ Sci-Processes Impacts 2022; 24: 290-315. [Article] [Google Scholar]
- Schiffer JM, Mael LE, Prather KA, et al. Sea spray aerosol: where marine biology meets atmospheric chemistry. ACS Cent Sci 2018; 4: 1617-1623. [Article] [Google Scholar]
- Moallemi A, Landwehr S, Robinson C, et al. Sources, occurrence and characteristics of fluorescent biological aerosol particles measured over the pristine Southern Ocean. J Geophys Res-Atmos 2021; 126: e2021JD034811. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Santander MV, Mitts BA, Pendergraft MA, et al. Tandem fluorescence measurements of organic matter and bacteria released in sea spray aerosols. Environ Sci Technol 2021; 55: 5171-5179. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kawana K, Matsumoto K, Taketani F, et al. Fluorescent biological aerosol particles over the central Pacific Ocean: covariation with ocean surface biological activity indicators. Atmos Chem Phys 2021; 21: 15969-15983. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ma M, Zhen Y, Mi T. Characterization of bacterial communities in bioaerosols over northern Chinese marginal seas and the northwestern pacific ocean in spring. J Appl Meteorol Climatol 2019; 58: 903-917. [Article] [CrossRef] [Google Scholar]
- Shi Y, Lai S, Liu Y, et al. Fungal aerosol diversity over the northern South China Sea: the influence of land and ocean. J Geophys Res-Atmos 2022; 127: e2021JD035213. [Article] [NASA ADS] [Google Scholar]
- Michaud JM, Thompson LR, Kaul D, et al. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nat Commun 2018; 9: 2017. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Creamean JM, Cross JN, Pickart R, et al. Ice nucleating particles carried from below a phytoplankton bloom to the Arctic atmosphere. Geophys Res Lett 2019; 46: 8572-8581. [Article] [Google Scholar]
- Yu S, Zhou X, Hu P, et al. Inhalable particle-bound marine biotoxins in a coastal atmosphere: concentration levels, influencing factors and health risks. J Hazard Mater 2022; 434: 128925. [Article] [CrossRef] [PubMed] [Google Scholar]
- Van Acker E, Huysman S, De Rijcke M, et al. Phycotoxin-enriched sea spray aerosols: methods, mechanisms, and human exposure. Environ Sci Technol 2021; 55: 6184-6196. [Article] [Google Scholar]
- May NW, Olson NE, Panas M, et al. Aerosol emissions from great lakes harmful algal blooms. Environ Sci Technol 2018; 52: 397-405. [Article] [CrossRef] [PubMed] [Google Scholar]
- Plaas HE, Paerl HW. Toxic cyanobacteria: a growing threat to water and air quality. Environ Sci Technol 2021; 55: 44-64. [Article] [Google Scholar]
- Olson NE, Cooke ME, Shi JH, et al. Harmful algal bloom toxins in aerosol generated from inland lake water. Environ Sci Technol 2020; 54: 4769-4780. [Article] [Google Scholar]
- Schuerger AC, Smith DJ, Griffin DW, et al. Science questions and knowledge gaps to study microbial transport and survival in Asian and African dust plumes reaching North America. Aerobiologia 2018; 34: 425-435. [Article] [CrossRef] [Google Scholar]
- Aalismail NA, Ngugi DK, Díaz-Rúa R, et al. Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. Sci Rep 2019; 9: 13741. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Peng X, Gat D, Paytan A, et al. The response of airborne mycobiome to dust storms in the eastern Mediterranean. JoF 2021; 7: 802. [Article] [CrossRef] [Google Scholar]
- Mazar Y, Cytryn E, Erel Y, et al. Effect of dust storms on the atmospheric microbiome in the eastern Mediterranean. Environ Sci Technol 2016; 50: 4194-4202. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Maki T, Lee KC, Kawai K, et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J Geophys Res-Atmos 2019; 124: 5579-5588. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Weil T, De Filippo C, Albanese D, et al. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 2017; 5: 32. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tyagi P, Kawamura K, Bikkina S, et al. Hydroxy fatty acids in snow pit samples from Mount Tateyama in central Japan: implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust. J Geophys Res-Atmos 2016; 121: 13,641-13,660. [Article] [CrossRef] [Google Scholar]
- Maki T, Hara K, Iwata A, et al. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmos Chem Phys 2017; 17: 11877-11897. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Morrison D, Crawford I, Marsden N, et al. Quantifying bioaerosol concentrations in dust clouds through online UV-LIF and mass spectrometry measurements at the Cape Verde Atmospheric Observatory. Atmos Chem Phys 2020; 20: 14473-14490. [Article] [CrossRef] [Google Scholar]
- Maki T, Bin C, Kai K, et al. Vertical distributions of airborne microorganisms over Asian dust source region of Taklimakan and Gobi Desert. Atmos Environ 2019; 214: 116848. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tang K, Huang Z, Huang J, et al. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the dust-bioaerosol 2016 campaign. Atmos Chem Phys 2018; 18: 7131-7148. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shen F, Niu M, Zhou F, et al. Culturability, metabolic activity and composition of ambient bacterial aerosols in a surrogate lung fluid. Sci Total Environ 2019; 690: 76-84. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fu P, Zhuang G, Sun Y, et al. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmos Environ 2016; 130: 64-73. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Péguilhan R, Besaury L, Rossi F, et al. Rainfalls sprinkle cloud bacterial diversity while scavenging biomass. FEMS Microbiol Ecol 2021; 97: fiab144. [Article] [Google Scholar]
- Williams CG, Barnéoud P. Live pine pollen in rainwater: reconstructing its long-range transport. Aerobiologia 2021; 37: 333-350. [Article] [CrossRef] [Google Scholar]
- Hu W, Niu H, Murata K, et al. Bacteria in atmospheric waters: detection, characteristics and implications. Atmos Environ 2018; 179: 201-221. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Niu M, Hu W, Cheng B, et al. Influence of rainfall on fungal aerobiota in the urban atmosphere over Tianjin, China: a case study. Atmos Environ-X 2021; 12: 100137. [Article] [Google Scholar]
- Kim S, Park H, Gruszewski HA, et al. Vortex-induced dispersal of a plant pathogen by raindrop impact. Proc Natl Acad Sci USA 2019; 116: 4917-4922. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Joung YS, Ge Z, Buie CR. Bioaerosol generation by raindrops on soil. Nat Commun 2017; 8: 14668. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dillon K P, Correa F, Judon C, et al. Cyanobacteria and algae in clouds and rain in the area of puy de dome, central France. Appl Environ Microbiol 2021; 87; e01850-20. [Google Scholar]
- Stone EA, Mampage CBA, Hughes DD, et al. Airborne sub-pollen particles from rupturing giant ragweed pollen. Aerobiologia 2021; 37: 625-632. [Article] [CrossRef] [Google Scholar]
- Wozniak MC, Solmon F, Steiner AL. Pollen rupture and its impact on precipitation in clean continental conditions. Geophys Res Lett 2018; 45: 7156-7164. [Article] [Google Scholar]
- Moore RA, Martinetti D, Bigg EK, et al. Climatic and landscape changes as drivers of environmental feedback that influence rainfall frequency in the United States. Glob Change Biol 2021; 27: 6381-6393. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xi Y, Xu C, Downey A, et al. Ice nucleating properties of airborne dust from an actively retreating glacier in Yukon, Canada. Environ Sci-Atmos 2022; 2: 714-726. [Article] [Google Scholar]
- Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol 2020; 18: 35-46. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bikkina P, Kawamura K, Bikkina S, et al. Hydroxy fatty acids in rainwater and aerosols from suburban Tokyo in central Japan: the impact of long-range transport of soil microbes and plant waxes. ACS Earth Space Chem 2021; 5: 257-267. [Article] [Google Scholar]
- Thiel N, Münch S, Behrens W, et al. Airborne bacterial emission fluxes from manure-fertilized agricultural soil. Microb Biotechnol 2020; 13: 1631-1647. [Article] [CrossRef] [PubMed] [Google Scholar]
- Warren SD, St. Clair LL, Leavitt SD. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 2019; 35: 45-56. [Article] [CrossRef] [Google Scholar]
- Elliott DR, Thomas AD, Strong CL, et al. Surface stability in drylands is influenced by dispersal strategy of soil bacteria. J Geophys Res-Biogeosci 2019; 124: 3403-3418. [Article] [CrossRef] [Google Scholar]
- Bashir I, War AF, Rafiq I, et al. Phyllosphere microbiome: diversity and functions. Microbiol Res 2022; 254: 126888. [Article] [CrossRef] [PubMed] [Google Scholar]
- Samaké A, Bonin A, Jaffrezo JL, et al. High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa. Atmos Chem Phys 2020; 20: 5609-5628. [Article] [CrossRef] [Google Scholar]
- Lang-Yona N, Pickersgill DA, Maurus I, et al. Species richness, rRNA gene abundance, and seasonal dynamics of airborne plant-pathogenic oomycetes. Front Microbiol 2018; 9: 2673. [Article] [Google Scholar]
- Striluk ML, Aho K, Weber CF. The effect of season and terrestrial biome on the abundance of bacteria with plant growth-promoting traits in the lower atmosphere. Aerobiologia 2017; 33: 137-149. [Article] [CrossRef] [Google Scholar]
- Abdelfattah A, Sanzani SM, Wisniewski M, et al. Revealing cues for fungal interplay in the plant-air interface in vineyards. Front Plant Sci 2019; 10: 922. [Article] [Google Scholar]
- Xu S, Yao M. Plant flowers transmit various bio-agents through air. Sci China Earth Sci 2020; 63: 1613-1621. [Article] [CrossRef] [Google Scholar]
- Chen Y, Zhu X, Hou Z, et al. RNA-based analysis reveals high diversity of plant-associated active fungi in the atmosphere. Front Microbiol 2021; 12: 683266. [Article] [Google Scholar]
- Wéry N, Galès A, Brunet Y. Bioaerosol sources. In: Delort AM, Amato P, eds.Microbiology of Aerosols. Hoboken: John Wiley & Sons; 2017; 115–35 [CrossRef] [Google Scholar]
- Hsiao TC, Lin AYC, Lien WC, et al. Size distribution, biological characteristics and emerging contaminants of aerosols emitted from an urban wastewater treatment plant. J Hazard Mater 2020; 388: 121809. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liang Z, Liao W, Yu Y, et al. How does vegetable waste decomposition influence the antibiotic resistome and the human bacterial pathogen structure in leachates?. ACS EST Water 2022; 2: 226-236. [Article] [Google Scholar]
- Yu Y, Liang Z, Liao W, et al. Contributions of meat waste decomposition to the abundance and diversity of pathogens and antibiotic-resistance genes in the atmosphere. Sci Total Environ 2021; 784: 147128. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schlosser O, Robert S, Noyon N. Airborne mycotoxins in waste recycling and recovery facilities: occupational exposure and health risk assessment. Waste Manage 2020; 105: 395-404. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Viegas C, Dias M, Almeida B, et al. Aspergillus spp. presence on mechanical protection gloves from the waste sorting industry. J Occupational Environ Hyg 2020; 17: 523-530. [Article] [CrossRef] [PubMed] [Google Scholar]
- Vermeulen LC, Brandsema PS, van de Kassteele J, et al. Atmospheric dispersion and transmission of Legionella from wastewater treatment plants: a 6-year case-control study. Int J Hyg Environ Health 2021; 237: 113811. [Article] [CrossRef] [PubMed] [Google Scholar]
- Uhrbrand K, Schultz AC, Koivisto AJ, et al. Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant. Water Res 2017; 112: 110-119. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ginn O, Rocha-Melogno L, Bivins A, et al. Detection and quantification of enteric pathogens in aerosols near open wastewater canals in cities with poor sanitation. Environ Sci Technol 2021; 55: 14758-14771. [Article] [Google Scholar]
- Zieliński W, Korzeniewska E, Harnisz M, et al. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ Int 2020; 143: 105914. [Article] [Google Scholar]
- Xie J, Jin L, Wu D, et al. Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks, and source contributions. Environ Sci Technol 2022; 56: 7040-7051. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li L, Wang Q, Bi W, et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes. Environ Sci Technol 2020; 54: 3900-3908. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- He P, Wei S, Shao L, et al. Aerosolization behavior of prokaryotes and fungi during composting of vegetable waste. Waste Manage 2019; 89: 103-113. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhou ZC, Liu Y, Lin ZJ, et al. Spread of antibiotic resistance genes and microbiota in airborne particulate matter, dust, and human airways in the urban hospital. Environ Int 2021; 153: 106501. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu D, Jin L, Xie J, et al. Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks. Microbiome 2022; 10: 19. [Article] [Google Scholar]
- Lemaire B, Normand AC, Forel JM, et al. Hospitalized patient as source of Aspergillus fumigatus, 2015. Emerg Infect Dis 2018; 24: 1524-1527. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang T, Lu J, Ying L, et al. An acute gastroenteritis outbreak caused by GII.P16-GII.2 norovirus associated with airborne transmission via the air conditioning unit in a kindergarten in Lianyungang, China. Int J Infect Dis 2017; 65: 81-84. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ali W, Yang Y, Gong L, et al. Emission characteristics and quantitative health risk assessment of bioaerosols in an indoor toilet after flushing under various ventilation scenarios. Building Environ 2022; 207: 108463. [Article] [CrossRef] [Google Scholar]
- Zhang Y, Shen F, Yang Y, et al. Insights into the profile of the human expiratory microbiota and its associations with indoor microbiotas. Environ Sci Technol 2022; 56: 6282-6293. [Article] [Google Scholar]
- Xu C, Wu CY, Yao M. Fluorescent bioaerosol particles resulting from human occupancy with and without respirators. Aerosol Air Qual Res 2017; 17: 198-208. [Article] [CrossRef] [Google Scholar]
- Zheng Y, Chen H, Yao M, et al. Bacterial pathogens were detected from human exhaled breath using a novel protocol. J Aerosol Sci 2018; 117: 224-234. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Edwards D A, Ausiello D, Salzman J, et al. Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proc Natl Acad Sci USA 2021; 118: e2021830118. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Karstens L, Asquith M, Caruso V, et al. Community profiling of the urinary microbiota: considerations for low-biomass samples. Nat Rev Urol 2018; 15: 735-749. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Yao M. Walking-induced exposure of biological particles simulated by a children robot with different shoes on public floors. Environ Int 2022; 158: 106935. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma J, Qi X, Chen H, et al. Coronavirus disease 2019 patients in earlier stages exhaled millions of severe acute respiratory syndrome coronavirus 2 per hour. Clin Infect Dis 2021; 72: e652-e654. [Article] [Google Scholar]
- Isidro J, Borges V, Pinto M, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 2022; 28: 1569-1572. [Article] [Google Scholar]
- Bai H, He LY, Wu DL, et al. Spread of airborne antibiotic resistance from animal farms to the environment: dispersal pattern and exposure risk. Environ Int 2022; 158: 106927. [Article] [CrossRef] [PubMed] [Google Scholar]
- de Rooij MMT, Hoek G, Schmitt H, et al. Insights into livestock-related microbial concentrations in air at residential level in a livestock dense area. Environ Sci Technol 2019; 53: 7746-7758. [Article] [Google Scholar]
- Yang F, Gao Y, Zhao H, et al. Revealing the distribution characteristics of antibiotic resistance genes and bacterial communities in animal-aerosol-human in a chicken farm: from one-health perspective. Ecotoxicol Environ Saf 2021; 224: 112687. [Article] [CrossRef] [PubMed] [Google Scholar]
- Trinh P, Zaneveld J R, Safranek S, et al. One health relationships between human, animal, and environmental microbiomes: a mini-review. Front Public Health 2018; 6[Article] [CrossRef] [PubMed] [Google Scholar]
- Sørensen AIV, Hansen JE, Halasa T. A dynamic model for spread of livestock-associated methicillin-resistant Staphylococcus aureus on a pig farm, incorporating bacterial load and human exposure through air. J Theor Biol 2020; 505: 110402. [Article] [CrossRef] [PubMed] [Google Scholar]
- Prather KA, Marr LC, Schooley RT, et al. Airborne transmission of SARS-CoV-2. Science 2020; 370: 303-304. [Article] [Google Scholar]
- Wang CC, Prather KA, Sznitman J, et al. Airborne transmission of respiratory viruses. Science 2021; 373: 981. [Article] [Google Scholar]
- Yao M. “Smoke detector” of human diseases for environmental aerosol exposure. Chin J Chem 2022; 40: 1471-1477. [Article] [Google Scholar]
- Yao M. SARS-CoV-2 aerosol transmission and detection. Eco-Environ Health 2022; 1: 3-10. [Article] [CrossRef] [Google Scholar]
- Pulschen A A, De Araujo G G, Souza Ramosde Carvalho A C, et al. Survival of extremophilic yeasts in the stratospheric environment during balloon flights and in laboratory simulations. Appl Environ Microbiol 2018; 84; e01942-18 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- González-Pleiter M, Edo C, Casero-Chamorro MC, et al. Viable microorganisms on fibers collected within and beyond the planetary boundary layer. Environ Sci Technol Lett 2020; 7: 819-825. [Article] [CrossRef] [Google Scholar]
- Cheng Y, Zheng G, Wei C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci Adv 2016; 2: e1601530. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ding AJ, Huang X, Nie W, et al. Enhanced haze pollution by black carbon in megacities in China. Geophys Res Lett 2016; 43: 2873-2879. [Article] [Google Scholar]
- Han Y, Zhang M, Li L, et al. Microbial population structure in near-ground aerosols during fog-haze days in northern China. Air Qual Atmos Health 2017; 10: 1113-1121. [Article] [CrossRef] [Google Scholar]
- Gao M, Yan X, Qiu T, et al. Variation of correlations between factors and culturable airborne bacteria and fungi. Atmos Environ 2016; 128: 10-19. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Dong L, Qi J, Shao C, et al. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci Total Environ 2016; 541: 1011-1018. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wei K, Zou Z, Zheng Y, et al. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci Total Environ 2016; 550: 751-759. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu C, Wei M, Chen J, et al. Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Sci Total Environ 2017; 580: 188-196. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yan D, Zhang T, Su J, et al. Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Front Microbiol 2016; 7: 487. [Article] [Google Scholar]
- Li Y, Lu R, Li W, et al. Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China. J Aerosol Sci 2017; 106: 83-92. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun Y, Xu S, Zheng D, et al. Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. Sci Total Environ 2018; 637-638: 507-516. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xie Z, Li Y, Lu R, et al. Characteristics of total airborne microbes at various air quality levels. J Aerosol Sci 2018; 116: 57-65. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lu R, Li Y, Li W, et al. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Sci Total Environ 2018; 637-638: 244-252. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lu R, Fan C, Liu P, et al. Exposure characteristics of airborne bacteria during a haze pollution event at Qinling Mountain, China. Hum Ecol Risk Assessment-An Int J 2019; 25: 438-454. [Article] [CrossRef] [Google Scholar]
- Sun X, Li D, Li B, et al. Exploring the effects of haze pollution on airborne fungal composition in a cold megacity in Northeast China. J Clean Prod 2021; 280: 124205. [Article] [CrossRef] [Google Scholar]
- Fan C, Li Y, Liu P, et al. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi’an, China. Sci Total Environ 2019; 672: 834-845. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zeng X, Kong S, Zheng S, et al. Variation of airborne DNA mass ratio and fungal diversity in fine particles with day-night difference during an entire winter haze evolution process of Central China. Sci Total Environ 2019; 694: 133802. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xie Z, Du S, Ma T, et al. High time-resolved characterization of airborne microbial community during a typical haze pollution process. J Hazard Mater 2021; 415: 125722. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang T, Li X, Wang M, et al. Time-resolved spread of antibiotic resistance genes in highly polluted air. Environ Int 2019; 127: 333-339. [Article] [CrossRef] [PubMed] [Google Scholar]
- Su H, Cheng Y, Pöschl U. New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Acc Chem Res 2020; 53: 2034-2043. [Article] [Google Scholar]
- Huang X, Ding A, Gao J, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci Rev 2021; 8: nwaa137. [Article] [Google Scholar]
- Li K, Jacob DJ, Liao H, et al. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc Natl Acad Sci USA 2021; 118: e2015797118. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lu X, Zhang L, Wang X, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ Sci Technol Lett 2020; 7: 240-247. [Article] [Google Scholar]
- Zhang T, Li X, Wang M, et al. Microbial aerosol chemistry characteristics in highly polluted air. Sci China Chem 2019; 62: 1051-1063. [Article] [CrossRef] [Google Scholar]
- Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 2011; 9: 330-343. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 2017; 15: 338-350. [Article] [CrossRef] [PubMed] [Google Scholar]
- Klein AM, Bohannan BJM, Jaffe DA, et al. Molecular evidence for metabolically active bacteria in the atmosphere. Front Microbiol 2016; 7: 772. [Article] [Google Scholar]
- Xu C, Chen H, Zhu C, et al. Overlooked significant impact of trace metals on the bacterial community of PM2.5 in high-time resolution. J Geophys Res-Atmos 2021; 126: e2021JD035408. [Article] [NASA ADS] [Google Scholar]
- Ng TW, Ip M, Chao CYH, et al. Differential gene expression in Escherichia coli during aerosolization from liquid suspension. Appl Microbiol Biotechnol 2018; 102: 6257-6267. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tignat-Perrier R, Dommergue A, Thollot A, et al. Microbial functional signature in the atmospheric boundary layer. Biogeosciences 2020; 17: 6081-6095. [Article] [CrossRef] [Google Scholar]
- Amato P, Besaury L, Joly M, et al. Metatranscriptomic exploration of microbial functioning in clouds. Sci Rep 2019; 9: 4383. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jaber S, Lallement A, Sancelme M, et al. Biodegradation of phenol and catechol in cloud water: comparison to chemical oxidation in the atmospheric multiphase system. Atmos Chem Phys 2020; 20: 4987-4997. [Article] [CrossRef] [Google Scholar]
- Samake A, Uzu G, Martins JMF, et al. The unexpected role of bioaerosols in the oxidative potential of PM. Sci Rep 2017; 7: 10978. [Article] [CrossRef] [PubMed] [Google Scholar]
- Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci 2016; 7: 6604-6616. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ai Y, Wang C, Pan YL, et al. Characterization of single fungal aerosol particles in a reactive atmospheric environment using time-resolved optical trapping-Raman spectroscopy (OT-RS). Environ Sci-Atmos 2022; 2: 591-600. [Article] [Google Scholar]
- Lee C, Dommer AC, Schiffer JM, et al. Cation-driven lipopolysaccharide morphological changes impact heterogeneous reactions of nitric acid with sea spray aerosol particles. J Phys Chem Lett 2021; 12: 5023-5029. [Article] [CrossRef] [PubMed] [Google Scholar]
- Trueblood JV, Estillore AD, Lee C, et al. Heterogeneous chemistry of lipopolysaccharides with gas-phase nitric acid: reactive sites and reaction pathways. J Phys Chem A 2016; 120: 6444-6450. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Davey RL, Mattson EJ, Huffman JA. Heterogeneous nitration reaction of BSA protein with urban air: improvements in experimental methodology. Anal Bioanal Chem 2022; 414: 4347-4358. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang S, Song T, Shiraiwa M, et al. Occurrence of aerosol proteinaceous matter in urban Beijing: an investigation on composition, sources, and atmospheric processes during the “apec blue” period. Environ Sci Technol 2019; 53: 7380-7390. [Article] [Google Scholar]
- Zhu YG, Penuelas J. Changes in the environmental microbiome in the Anthropocene. Glob Change Biol 2020; 26: 3175-3177. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cavicchioli R, Ripple WJ, Timmis KN, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17: 569-586. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pörtner HO, Roberts DC, Tignor M, et al. IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA, 2022 [Google Scholar]
- Ervens B, Amato P. The global impact of bacterial processes on carbon mass. Atmos Chem Phys 2020; 20: 1777-1794. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang M, Khaled A, Amato P, et al. Sensitivities to biological aerosol particle properties and ageing processes: potential implications for aerosol-cloud interactions and optical properties. Atmos Chem Phys 2021; 21: 3699-3724. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pandey R, Usui K, Livingstone RA, et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci Adv 2016; 2: e1501630. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Kunert AT, Pöhlker ML, Tang K, et al. Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing. Biogeosciences 2019; 16: 4647-4659. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Roeters SJ, Golbek TW, Bregnhøj M, et al. Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water. Nat Commun 2021; 12: 1183. [Article] [Google Scholar]
- Mikhailov EF, Pöhlker ML, Reinmuth-Selzle K, et al. Water uptake of subpollen aerosol particles: hygroscopic growth, cloud condensation nuclei activation, and liquid-liquid phase separation. Atmos Chem Phys 2021; 21: 6999-7022. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gute E, Abbatt JPD. Ice nucleating behavior of different tree pollen in the immersion mode. Atmos Environ 2020; 231: 117488. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Crawford I, Lloyd G, Herrmann E, et al. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the high-altitude research station jungfraujoch. Atmos Chem Phys 2016; 16: 2273-2284. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Twohy CH, McMeeking GR, DeMott PJ, et al. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds. Atmos Chem Phys 2016; 16: 8205-8225. [Article] [CrossRef] [Google Scholar]
- Conen F, Eckhardt S, Gundersen H, et al. Rainfall drives atmospheric ice-nucleating particles in the coastal climate of southern Norway. Atmos Chem Phys 2017; 17: 11065-11073. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Šantl-Temkiv T, Lange R, Beddows D, et al. Biogenic sources of ice nucleating particles at the high Arctic Site Villum research station. Environ Sci Technol 2019; 53: 10580-10590. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hummel M, Hoose C, Pummer B, et al. Simulating the influence of primary biological aerosol particles on clouds by heterogeneous ice nucleation. Atmos Chem Phys 2018; 18: 15437-15450. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sicard M, Izquierdo R, Alarcón M, et al. Near-surface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain. Atmos Chem Phys 2016; 16: 6805-6821. [Article] [CrossRef] [Google Scholar]
- Mayol E, Arrieta JM, Jiménez MA, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat Commun 2017; 8: 201. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Crawford I, Gallagher MW, Bower KN, et al. Real-time detection of airborne fluorescent bioparticles in Antarctica. Atmos Chem Phys 2017; 17: 14291-14307. [Article] [CrossRef] [Google Scholar]
- Petroselli C, Montalbani E, La Porta G, et al. Characterization of long-range transported bioaerosols in the Central Mediterranean. Sci Total Environ 2021; 763: 143010. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Maki T, Furumoto S, Asahi Y, et al. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities. Atmos Chem Phys 2018; 18: 8155-8171. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Santibáñez PA, Maselli OJ, Greenwood MC, et al. Prokaryotes in the WAIS divide ice core reflect source and transport changes between last glacial maximum and the early Holocene. Glob Change Biol 2018; 24: 2182-2197. [Article] [CrossRef] [PubMed] [Google Scholar]
- Violaki K, Nenes A, Tsagkaraki M, et al. Bioaerosols and dust are the dominant sources of organic P in atmospheric particles. npj Clim Atmos Sci 2021; 4: 63. [Article] [CrossRef] [Google Scholar]
- Fløistrup KM, Olsen MN, Rasmussen TG, et al. Recruitment of airborne microorganisms on sterilized soil at different heights above ground. Appl Soil Ecol 2018; 126: 85-87. [Article] [CrossRef] [Google Scholar]
- Herut B, Rahav E, Tsagaraki TM, et al. The potential impact of Saharan dust and polluted aerosols on microbial populations in the east Mediterranean Sea, an overview of a mesocosm experimental approach. Front Mar Sci 2016; 3: 226. [Article] [Google Scholar]
- Rahav E, Paytan A, Mescioglu E, et al. Airborne microbes contribute to N2 fixation in surface water of the northern Red Sea. Geophys Res Lett 2018; 45: 6186-6194. [Article] [Google Scholar]
- Mescioglu E, Rahav E, Frada MJ, et al. Dust-associated airborne microbes affect primary and bacterial production rates, and eukaryotes diversity, in the northern Red Sea: a mesocosm approach. Atmosphere 2019; 10: 358. [Article] [CrossRef] [Google Scholar]
- Rahav E, Paytan A, Chien C T, et al. The impact of atmospheric dry deposition associated microbes on the southeastern Mediterranean Sea surface water following an intense dust storm. Front Mar Sci 2016; 3: 127. [Article] [Google Scholar]
- Comte J, Langenheder S, Berga M, et al. Contribution of different dispersal sources to the metabolic response of lake bacterioplankton following a salinity change. Environ Microbiol 2017; 19: 251-260. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hanson MC, Petch GM, Ottosen TB, et al. Climate change impact on fungi in the atmospheric microbiome. Sci Total Environ 2022; 830: 154491. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Malard LA, Pearce DA. Bacterial colonisation: from airborne dispersal to integration within the soil community. Front Microbiol 2022; 13: 782789. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou SYD, Li H, Giles M, et al. Microbial flow within an air-phyllosphere-soil continuum. Front Microbiol 2021; 11: 615481. [Article] [Google Scholar]
- Genitsaris S, Stefanidou N, Beeri-Shlevin Y, et al. Air-dispersed aquatic microorganisms show establishment and growth preferences in different freshwater colonisation habitats. FEMS Microbiol Ecol 2021; 97: fiab122. [Article] [Google Scholar]
- Debray R, Herbert RA, Jaffe AL, et al. Priority effects in microbiome assembly. Nat Rev Microbiol 2022; 20: 109-121. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jin L, Pruden A, Boehm A B, et al. Integrating environmental dimensions of “one health” to combat antimicrobial resistance: essential research needs. Environ Sci Technol 2022; 56: 14871-14874. [Article] [Google Scholar]
- Martorano L, Erwin E A. Aeroallergen exposure and spread in the modern era. J Allergy Clin Immunol-Pract 2018; 6: 1835-1842. [Article] [CrossRef] [Google Scholar]
- Reinmuth-Selzle K, Kampf CJ, Lucas K, et al. Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol 2017; 51: 4119-4141. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Nazaroff WW. Embracing microbes in exposure science. J Expo Sci Environ Epidemiol 2019; 29: 1-10. [Article] [CrossRef] [PubMed] [Google Scholar]
- Arregui S, Iglesias MJ, Samper S, et al. Data-driven model for the assessment of Mycobacterium tuberculosis transmission in evolving demographic structures. Proc Natl Acad Sci USA 2018; 115: E3238-E3245. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou J, Wei J, Choy KT, et al. Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proc Natl Acad Sci USA 2018; 115: E2386-E2392. [Article] [NASA ADS] [Google Scholar]
- Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 2021; 19: 528-545. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pineda Rojas AL, Cordo SM, Saurral RI, et al. Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires. Environ Sci Technol 2021; 55: 11176-11182. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Marr LC, Tang JW, Van Mullekom J, et al. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J R Soc Interface 2019; 16: 20180298. [Article] [CrossRef] [PubMed] [Google Scholar]
- Niazi S, Short KR, Groth R, et al. Humidity-dependent survival of an airborne influenza a virus: practical implications for controlling airborne viruses. Environ Sci Technol Lett 2021; 8: 412-418. [Article] [Google Scholar]
- Niazi S, Groth R, Cravigan L, et al. Susceptibility of an airborne common cold virus to relative humidity. Environ Sci Technol 2021; 55: 499-508. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Smither SJ, Eastaugh LS, Findlay JS, et al. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerging Microbes Infects 2020; 9: 1415-1417. [Article] [CrossRef] [Google Scholar]
- Barnes NM, Wu H. Mechanisms regulating the airborne survival of Klebsiella pneumoniae under different relative humidity and temperature levels. Indoor Air 2022; 32: e12991. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yao M, Zhang L, Ma J, et al. On airborne transmission and control of SARS-Cov-2. Sci Total Environ 2020; 731: 139178. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lewis D. Why the WHO took two years to say COVID is airborne. Nature 2022; 604: 26-31. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020; 582: 557-560. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang Z, Li X, Wang Q, et al. Field simulation of aerosol transmission of SARS-CoV-2 in a special building layout—Guangdong Province, China, 2021. China CDC Weekly 2021; 3: 711-715. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen Y, Li C, Dong H, et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern Med 2020; 180: 1665. [Article] [CrossRef] [PubMed] [Google Scholar]
- Miller SL, Nazaroff WW, Jimenez JL, et al. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air 2021; 31: 314-323. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hetemäki I, Kääriäinen S, Alho P, et al. An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021. Eurosurveillance 2021; 26: 2100636. [Article] [Google Scholar]
- Azimi P, Keshavarz Z, Cedeno Laurent JG, et al. Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission. Proc Natl Acad Sci USA 2021; 118: e2015482118. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lednicky JA, Lauzardo M, Fan ZH, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis 2020; 100: 476-482. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sachs JD, Karim SSA, Aknin L, et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 2022; 400: 1224-1280. [Article] [CrossRef] [PubMed] [Google Scholar]
- Carlson CJ, Albery GF, Merow C, et al. Climate change increases cross-species viral transmission risk. Nature 2022; 607: 555-562. [Article] [CrossRef] [PubMed] [Google Scholar]
- Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol 2022; 20: 257-269. [Article] [CrossRef] [PubMed] [Google Scholar]
- He T, Jin L, Xie J, et al. Intracellular and extracellular antibiotic resistance genes in airborne PM2.5 for respiratory exposure in urban areas. Environ Sci Technol Lett 2021; 8: 128-134. [Article] [CrossRef] [Google Scholar]
- Liang Z, Yu Y, Ye Z, et al. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human. Environ Int 2020; 143: 105934. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang M, Yao M, Zhu Y. Antibiotic resistance genes and antibiotic sensitivity in bacterial aerosols and their comparisons with known respiratory pathogens. J Aerosol Sci 2022; 161: 105931. [Article] [CrossRef] [Google Scholar]
- Cáliz J, Subirats J, Triadó-Margarit X, et al. Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions. Environ Int 2022; 160: 107077. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Q, Guo S, Hou Z, et al. Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil. Sci Total Environ 2021; 799: 149260. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li J, Cao J, Zhu Y, et al. Global survey of antibiotic resistance genes in air. Environ Sci Technol 2018; 52: 10975-10984. [Article] [Google Scholar]
- Wang Q, Hou Z, Li L, et al. Seasonal disparities and source tracking of airborne antibiotic resistance genes in Handan, China. J Hazard Mater 2022; 422: 126844. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu G, Wang X, Yang T, et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J 2021; 15: 270-281. [Article] [CrossRef] [PubMed] [Google Scholar]
- Antimicrobial Resistance C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399: 629-655. [Article] [CrossRef] [PubMed] [Google Scholar]
- Patel S, Rani A, Goyal A. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling. Comput Biol Chem 2017; 70: 31-39. [Article] [Google Scholar]
- Williams CG, Després V. Northern Hemisphere forests at temperate and boreal latitudes are substantial pollen contributors to atmospheric bioaerosols. For Ecol Manage 2017; 401: 187-191. [Article] [CrossRef] [Google Scholar]
- Šikoparija B, Mimić G, Panić M, et al. High temporal resolution of airborne Ambrosia pollen measurements above the source reveals emission characteristics. Atmos Environ 2018; 192: 13-23. [Article] [CrossRef] [Google Scholar]
- Maya-Manzano JM, Fernández-Rodríguez S, Smith M, et al. Airborne Quercus pollen in SW Spain: identifying favourable conditions for atmospheric transport and potential source areas. Sci Total Environ 2016; 571: 1037-1047. [Article] [CrossRef] [PubMed] [Google Scholar]
- Adams-Groom B, Skjøth CA, Baker M, et al. Modelled and observed surface soil pollen deposition distance curves for isolated trees of Carpinus betulus, Cedrus atlantica, Juglans nigra and Platanus acerifolia. Aerobiologia 2017; 33: 407-416. [Article] [CrossRef] [Google Scholar]
- Ciani F, Dell’Olmo L, Foggi B, et al. The effect of urban green areas on pollen concentrations at ground level: a study in the city of Florence (Italy). Urban Forry Urban Greening 2021; 60: 127045. [Article] [Google Scholar]
- Rojo J, Oteros J, Picornell A, et al. Land-use and height of pollen sampling affect pollen exposure in Munich, Germany. Atmosphere 2020; 11: 145. [Article] [CrossRef] [Google Scholar]
- Kolek F, Plaza MP, Charalampopoulos A, et al. Biodiversity, abundance, seasonal and diurnal airborne pollen distribution patterns at two different heights in Augsburg, Germany. Atmos Environ 2021; 267: 118774. [Article] [CrossRef] [Google Scholar]
- García-Mozo H, Oteros JA, Galán C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Sci Total Environ 2016; 548-549: 221-228. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rojo J, Oteros J, Pérez-Badia R, et al. Near-ground effect of height on pollen exposure. Environ Res 2019; 174: 160-169. [Article] [Google Scholar]
- Borycka K, Kasprzyk I. Hourly pattern of allergenic alder and birch pollen concentrations in the air: spatial differentiation and the effect of meteorological conditions. Atmos Environ 2018; 182: 179-192. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Borycka K, Kasprzyk I. Do the threats of alder and birch allergenic pollen differ within an urban area?. Urban Forry Urban Greening 2018; 34: 281-293. [Article] [Google Scholar]
- Buters JTM, Antunes C, Galveias A, et al. Pollen and spore monitoring in the world. Clin Transl Allergy 2018; 8: 9. [Article] [Google Scholar]
- Davies JM, Berman D, Beggs PJ, et al. Global climate change and pollen aeroallergens. Immunol Allergy Clin N Am 2021; 41: 1-16. [Article] [CrossRef] [Google Scholar]
- Lake IR, Jones NR, Agnew M, et al. Climate change and future pollen allergy in Europe. Environ Health Perspect 2017; 125: 385-391. [Article] [CrossRef] [PubMed] [Google Scholar]
- Damialis A, Häring F, Gökkaya M, et al. Human exposure to airborne pollen and relationships with symptoms and immune responses: indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments. Sci Total Environ 2019; 653: 190-199. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Matsuda S, Kawashima S. Relationship between laser light scattering and physical properties of airborne pollen. J Aerosol Sci 2018; 124: 122-132. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Schaefer J, Milling M, Schuller BW, et al. Towards automatic airborne pollen monitoring: From commercial devices to operational by mitigating class-imbalance in a deep learning approach. Sci Total Environ 2021; 796: 148932. [Article] [CrossRef] [PubMed] [Google Scholar]
- Matricardi PM, Dramburg S, Alvarez-Perea A, et al. The role of mobile health technologies in allergy care: an EAACI position paper. Allergy 2020; 75: 259-272. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kenđel A, Zimmermann B. Chemical analysis of pollen by FT-Raman and FTIR spectroscopies. Front Plant Sci 2020; 11: 352. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sánchez-Parra B, Núñez A, García AM, et al. Distribution of airborne pollen, fungi and bacteria at four altitudes using high-throughput DNA sequencing. Atmos Res 2021; 249: 105306. [Article] [CrossRef] [Google Scholar]
- Rowney FM, Brennan GL, Skjøth CA, et al. Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health. Curr Biol 2021; 31: 1995-2003.e4. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tseng YT, Kawashima S, Kobayashi S, et al. Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors. Sci Total Environ 2020; 698: 134246. [Article] [CrossRef] [PubMed] [Google Scholar]
- Khwarahm NR, Dash J, Skjøth CA, et al. Mapping the birch and grass pollen seasons in the UK using satellite sensor time-series. Sci Total Environ 2017; 578: 586-600. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bohlmann S, Shang X, Vakkari V, et al. Lidar depolarization ratio of atmospheric pollen at multiple wavelengths. Atmos Chem Phys 2021; 21: 7083-7097. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Oteros J, Bergmann KC, Menzel A, et al. Spatial interpolation of current airborne pollen concentrations where no monitoring exists. Atmos Environ 2019; 199: 435-442. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Poole JA, Barnes CS, Demain JG, et al. Impact of weather and climate change with indoor and outdoor air quality in asthma: a work group report of the AAAAI environmental exposure and respiratory health committee. J Allergy Clin Immunol 2019; 143: 1702-1710. [Article] [CrossRef] [PubMed] [Google Scholar]
- Katz DSW, Dzul A, Kendel A, et al. Effect of intra-urban temperature variation on tree flowering phenology, airborne pollen, and measurement error in epidemiological studies of allergenic pollen. Sci Total Environ 2019; 653: 1213-1222. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sapkota A, Dong Y, Li L, et al. Association between changes in timing of spring onset and asthma hospitalization in Maryland. JAMA Netw Open 2020; 3: e207551. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rojo J, Oteros J, Picornell A, et al. Effects of future climate change on birch abundance and their pollen load. Glob Change Biol 2021; 27: 5934-5949. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ravindra K, Goyal A, Mor S. Influence of meteorological parameters and air pollutants on the airborne pollen of city Chandigarh, India. Sci Total Environ 2022; 818: 151829. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cecchi L, Scala E, Caronni S, et al. Allergenicity at component level of sub-pollen particles from different sources obtained by osmolar shock: a molecular approach to thunderstorm-related asthma outbreaks. Clin Exp Allergy 2021; 51: 253-261. [Article] [Google Scholar]
- Tegart LJ, Johnston FH, Borchers Arriagada N, et al. ‘Pollen potency’: the relationship between atmospheric pollen counts and allergen exposure. Aerobiologia 2021; 37: 825-841. [Article] [CrossRef] [Google Scholar]
- Emmerson KM, Silver JD, Thatcher M, et al. Atmospheric modelling of grass pollen rupturing mechanisms for thunderstorm asthma prediction. PLoS ONE 2021; 16: e0249488. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Subba T, Lawler MJ, Steiner AL. Estimation of possible primary biological particle emissions and rupture events at the Southern Great Plains ARM Site. J Geophys Res-Atmos 2021; 126: e2021JD034679. [Article] [CrossRef] [Google Scholar]
- Zhang M, Klimach T, Ma N, et al. Size-resolved single-particle fluorescence spectrometer for real-time analysis of bioaerosols: laboratory evaluation and atmospheric measurements. Environ Sci Technol 2019; 53: 13257-13264. [Article] [Google Scholar]
- D’Amato G, Annesi-Maesano I, Vaghi A, et al. How do storms affect asthma?. Curr Allergy Asthma Rep 2018; 18: 24. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ziegler K, Kunert AT, Reinmuth-Selzle K, et al. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: implications for the health effects of air pollution and oxidative stress. Redox Biol 2020; 37: 101581. [Article] [CrossRef] [PubMed] [Google Scholar]
- Backes AT, Reinmuth-Selzle K, Leifke AL, et al. Oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone, nitrogen dioxide, and peroxynitrite: reaction products, kinetics, and health effects. Int J Mol Sci 2021; 22: 7616. [Article] [CrossRef] [PubMed] [Google Scholar]
- D’Amato G, Vitale C, Lanza M, et al. Climate change, air pollution, and allergic respiratory diseases: an update. Curr Opin Allergy Clin Immunol 2016; 16: 434-440. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li N, Georas S, Alexis N, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 2016; 138: 386-396. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ortega-Rosas CI, Meza-Figueroa D, Vidal-Solano JR, et al. Association of airborne particulate matter with pollen, fungal spores, and allergic symptoms in an arid urbanized area. Environ Geochem Health 2021; 43: 1761-1782. [Article] [CrossRef] [PubMed] [Google Scholar]
- Oteros J, Bartusel E, Alessandrini F, et al. Artemisia pollen is the main vector for airborne endotoxin. J Allergy Clin Immunol 2019; 143: 369-377.e5. [Article] [CrossRef] [PubMed] [Google Scholar]
- Prescott SL, Logan AC, Bristow J, et al. Exiting the Anthropocene: achieving personal and planetary health in the 21st century. Allergy 2022; 77: 3498-3512. [Article] [CrossRef] [PubMed] [Google Scholar]
- Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659-1724. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen F, Zhu T, Niu M. Pro-inflammatory effects of airborne particulate matters in relation to biological and chemical composition. Chin Sci Bull 2017; 63: 968-978. [Article] [Google Scholar]
- Shiraiwa M, Ueda K, Pozzer A, et al. Aerosol health effects from molecular to global scales. Environ Sci Technol 2017; 51: 13545-13567. [Article] [Google Scholar]
- Yue Y, Chen H, Setyan A, et al. Size-resolved endotoxin and oxidative potential of ambient particles in Beijing and Zürich. Environ Sci Technol 2018; 52: 6816-6824. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Farokhi A, Heederik D, Smit LAM. Respiratory health effects of exposure to low levels of airborne endotoxin—a systematic review. Environ Health 2018; 17: 14-33. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen F, Niu M, Chen H, et al. Nonlinear proinflammatory effect of short-term PM2.5 exposure: a potential role of lipopolysaccharide. J Environ Sci 2024; 136: 292-300. [Article] [CrossRef] [Google Scholar]
- Ahn J, Hayes RB. Environmental influences on the human microbiome and implications for noncommunicable disease. Annu Rev Public Health 2021; 42: 277-292. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kraemer JG, Aebi S, Oppliger A, et al. The indoor-air microbiota of pig farms drives the composition of the pig farmers’ nasal microbiota in a season-dependent and farm-specific manner. Appl Environ Microbiol 2019; 85: e03038-18. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Selway CA, Mills JG, Weinstein P, et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ Int 2020; 145: 106084. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ege MJ. The hygiene hypothesis in the age of the microbiome. Ann ATS 2017; 14: S348-S353. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115: 4440-4475. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yao M. Bioaerosol: a bridge and opportunity for many scientific research fields. J Aerosol Sci 2018; 115: 108-112. [Article] [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.