Open Access
Review
Issue |
Natl Sci Open
Volume 2, Number 5, 2023
|
|
---|---|---|
Article Number | 20220062 | |
Number of page(s) | 14 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20220062 | |
Published online | 03 August 2023 |
- Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1: 16014. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical potential. Theranostics 2016; 6: 1306-1323. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yu L, Hu P, Chen Y. Gas-generating nanoplatforms: Material chemistry, multifunctionality, and gas therapy. Adv Mater 2018; 30: 1801964. [Article] [CrossRef] [Google Scholar]
- Manoharan D, Li WP, Yeh CS. Advances in controlled gas-releasing nanomaterials for therapeutic applications. Nanoscale Horiz 2019; 4: 557-578. [Article] [Google Scholar]
- He W, Zhang Z, Sha X. Nanoparticles-mediated emerging approaches for effective treatment of ischemic stroke. Biomaterials 2021; 277: 121111. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang N, Gong F, Cheng L. Recent advances in upconversion nanoparticle-based nanocomposites for gas therapy. Chem Sci 2022; 13: 1883-1898. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Wijaya A, Maruf A, Wu W, et al. Recent advances in micro- and nano-bubbles for atherosclerosis applications. Biomater Sci 2020; 8: 4920-4939. [Article] [CrossRef] [PubMed] [Google Scholar]
- Duan L, Yang L, Jin J, et al. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 2020; 10: 462-483. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zhang C, Li Y, Ma X, et al. Functional micro/nanobubbles for ultrasound medicine and visualizable guidance. Sci China Chem 2021; 64: 899-914. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zahiri M, Taghavi S, Abnous K, et al. Theranostic nanobubbles towards smart nanomedicines. J Control Release 2021; 339: 164-194. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cavalli R, Bisazza A, Giustetto P, et al. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm 2009; 381: 160-165. [Article] [CrossRef] [PubMed] [Google Scholar]
- Swanson EJ, Borden MA. Injectable oxygen delivery based on protein-shelled microbubbles. Nano LIFE 2010; 1: 215-218. [Article] [Google Scholar]
- Iijima M, Gombodorj N, Tachibana Y, et al. Development of single nanometer-sized ultrafine oxygen bubbles to overcome the hypoxia-induced resistance to radiation therapy via the suppression of hypoxia-inducible factor-1α. Int J Oncol 2018; 52: 679-686. [Article] [PubMed] [Google Scholar]
- Khan MS, Hwang J, Seo Y, et al. Engineering oxygen nanobubbles for the effective reversal of hypoxia. Artif Cells Nanomed Biotechnol 2018; 46: 318-327. [Article] [CrossRef] [Google Scholar]
- Khan MS, Hwang J, Lee K, et al. Anti-tumor drug-loaded oxygen nanobubbles for the degradation of HIF-1α and the upregulation of reactive oxygen species in tumor cells. Cancers 2019; 11: 1464. [Article] [CrossRef] [PubMed] [Google Scholar]
- McEwan C, Owen J, Stride E, et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J Control Release 2015; 203: 51-56. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bhandari PN, Cui Y, Elzey BD, et al. Oxygen nanobubbles revert hypoxia by methylation programming. Sci Rep 2017; 7: 9268. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song L, Wang G, Hou X, et al. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater 2020; 108: 313-325. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang RR, Schroeder AB, Grudzinski JJ, et al. Beyond the margins: Real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 2017; 14: 347-364. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang L, Huang B, Hu S, et al. Indocyanine green assembled free oxygen-nanobubbles towards enhanced near-infrared induced photodynamic therapy. Nano Res 2022; 15: 4285-4293. [Article] [Google Scholar]
- Liang Z, Chen H, Gong X, et al. Ultrasound-induced destruction of nitric oxide-loaded microbubbles in the treatment of thrombus and ischemia-reperfusion injury. Front Pharmacol 2022; 12: 745693. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liao T, Li Q, Zhang Y, et al. Precise treatment of acute antibody-mediated cardiac allograft rejection in rats using C4d-targeted microbubbles loaded with nitric oxide. J Heart Lung Transplant 2020; 39: 481-490. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Ignarro LJ. Endothelium-derived nitric oxide: Actions and properties. FASEB j 1989; 3: 31-36. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cavalieri F, Finelli I, Tortora M, et al. Polymer microbubbles as diagnostic and therapeutic gas delivery device. Chem Mater 2008; 20: 3254-3258. [Article] [CrossRef] [Google Scholar]
- Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001; 2: 907-916. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bogdan C. Nitric oxide synthase in innate and adaptive immunity: An update. Trends Immunol 2015; 36: 161-178. [Article] [CrossRef] [PubMed] [Google Scholar]
- García-Ortiz A, Serrador JM. Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med 2018; 24: 412-427. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tong J, Ding J, Shen X, et al. Mesenchymal stem cell transplantation enhancement in myocardial infarction rat model under ultrasound combined with nitric oxide microbubbles. PLoS ONE 2013; 8: e80186. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Spinas GA, Laffranchi R, Francoys I, et al. The early phase of glucose-stimulated insulin secretion requires nitric oxide. Diabetologia 1998; 41: 292-299. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang F, Li M, Liu Y, et al. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. J Control Release 2016; 228: 87-95. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Li M, Li J, Chen J, et al. Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020; 14: 2024-2035. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chattaraj R, Hwang M, Zemerov SD, et al. Ultrasound responsive noble gas microbubbles for applications in image-guided gas delivery. Adv Healthc Mater 2020; 9: 1901721. [Article] [CrossRef] [Google Scholar]
- Sanders RD, Ma D, Maze M. Anaesthesia induced neuroprotection. Best Pract Res Clin Anaesth 2005; 19: 461-474. [Article] [CrossRef] [Google Scholar]
- Esencan E, Yuksel S, Tosun YB, et al. Xenon in medical area: Emphasis on neuroprotection in hypoxia and anesthesia. Med Gas Res 2013; 3: 4. [Article] [Google Scholar]
- Jin J, Li M, Li J, et al. Xenon nanobubbles for the image-guided preemptive treatment of acute ischemic stroke via neuroprotection and microcirculatory restoration. ACS Appl Mater Interfaces 2021; 13: 43880-43891. [Article] [CrossRef] [PubMed] [Google Scholar]
- Miao YF, Peng T, Moody MR, et al. Delivery of xenon-containing echogenic liposomes inhibits early brain injury following subarachnoid hemorrhage. Sci Rep 2018; 8: 450. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li Q, Lian C, Zhou R, et al. Pretreatment with xenon protected immature rabbit heart from ischaemia/reperfusion injury by opening of the mitoKATP channel. Heart Lung Circ 2013; 22: 276-283. [Article] [CrossRef] [PubMed] [Google Scholar]
- Irani Y, Pype JL, Martin AR, et al. Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra 2011; 1: 272-282. [Article] [Google Scholar]
- Shekhar H, Palaniappan A, Peng T, et al. Characterization and imaging of lipid-shelled microbubbles for ultrasound-triggered release of xenon. Neurotherapeutics 2019; 16: 878-890. [Article] [Google Scholar]
- Hwang M, Chattaraj R, Sridharan A, et al. Can ultrasound-guided xenon delivery provide neuroprotection in traumatic brain injury?. Neurotrauma Rep 2022; 3: 97-104. [Article] [CrossRef] [PubMed] [Google Scholar]
- Marano F, Frairia R, Rinella L, et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocrine-Relat Cancer 2017; 24: 275-286. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bosca F, Bielecki PA, Exner AA, et al. Porphyrin-loaded pluronic nanobubbles: A new US-activated agent for future theranostic applications. Bioconjugate Chem 2018; 29: 234-240. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen M, Liang X, Gao C, et al. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer. ACS Nano 2018; 12: 7312-7326. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun S, Xu Y, Fu P, et al. Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1α-siRNA. Nanoscale 2018; 10: 19945-19956. [Article] [Google Scholar]
- Nomikou N, Fowley C, Byrne NM, et al. Microbubble-sonosensitiser conjugates as therapeutics in sonodynamic therapy. Chem Commun 2012; 48: 8332-8334. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hou R, Liang X, Li X, et al. In situ conversion of rose bengal microbubbles into nanoparticles for ultrasound imaging guided sonodynamic therapy with enhanced antitumor efficacy. Biomater Sci 2020; 8: 2526-2536. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen S, Li Y, Xiao Y, et al. Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion. Biomaterials 2018; 181: 293-306. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen Y, Lv W, Yang H, et al. FA-NBs-IR780: Novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett 2019; 455: 14-25. [Article] [CrossRef] [PubMed] [Google Scholar]
- Suzuki R, Takizawa T, Negishi Y, et al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J Control Release 2008; 125: 137-144. [Article] [CrossRef] [PubMed] [Google Scholar]
- Suzuki R, Namai E, Oda Y, et al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J Control Release 2010; 142: 245-250. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schneider M, Arditi M, Barrau MB, et al. BR1: A new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Investig Radiol 1995; 30: 451-457. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jin J, Feng Z, Yang F, et al. Bulk nanobubbles fabricated by repeated compression of microbubbles. Langmuir 2019; 35: 4238-4245. [Article] [Google Scholar]
- Jin J, Wang R, Tang J, et al. Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse. Colloids Surfs A-Physicochem Eng Aspects 2020; 589: 124430. [Article] [CrossRef] [Google Scholar]
- Yang L, Huang B, Chen F, et al. Indocyanine green assembled nanobubbles with enhanced fluorescence and photostability. Langmuir 2020; 36: 12983-12989. [Article] [Google Scholar]
- Li J, Feng Z, Gu N, et al. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling. J Mater Sci Tech 2021; 63: 124-132. [Article] [Google Scholar]
- Li M, Wang L, Tang D, et al. Hemodynamic mimic shear stress for platelet membrane nanobubbles preparation and integrin αIIbβ3 conformation regulation. Nano Lett 2022; 22: 271-279. [Article] [Google Scholar]
- Li J, Zhang Y, Lou Z, et al. Magnetic nanobubble mechanical stress induces the Piezo1-Ca2+-BMP2/Smad pathway to modulate neural stem cell fate and MRI/ultrasound dual imaging surveillance for ischemic stroke. Small 2022; 18: 2201123. [Article] [CrossRef] [Google Scholar]
- Ryu JY, Won EJ, Lee HAR, et al. Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy. Biomaterials 2020; 232: 119736. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: A versatile non-viral platform for gene delivery. Int J Pharm 2013; 456: 437-445. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jin Z, Zhao P, Gong W, et al. Fe-porphyrin: A redox-related biosensor of hydrogen molecule. Nano Res 2023; 16: 2020-2025. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.