Issue
Natl Sci Open
Volume 3, Number 3, 2024
Special Topic: Energy Systems of Low Carbon Buildings
Article Number 20230056
Number of page(s) 48
Section Engineering
DOI https://doi.org/10.1360/nso/20230056
Published online 09 January 2024
  • Wang Z, Li H, Zhang B, et al. Unequal residential heating burden caused by combined heat and power phase-out under climate goals. Nat Energy 2023; 8 : 881-890. [Article] [Google Scholar]
  • You K, Li R, Yu Y, et al. Investigating CO2 emissions and disparity from China’s central heating: A perspective at the city level. Environ Impact Assessment Rev 2023; 103 : 107270. [Article] [CrossRef] [Google Scholar]
  • Guan X, Guo S, Xiong J, et al. Energy-related CO2 emissions of urban and rural residential buildings in China: A provincial analysis based on end-use activities. J Building Eng 2023; 64 : 105686. [Article] [CrossRef] [Google Scholar]
  • Cui H, Zou Y, Yang H, et al. Thermal-mechanical behaviors of concrete with innovative salt hydrate PCM-based thermal energy storage aggregate. Energy Convers Manage 2023; 293 : 117477. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yang H, Bao X, Cui H, et al. Optimization of supercooling, thermal conductivity, photothermal conversion, and phase change temperature of sodium acetate trihydrate for thermal energy storage applications. Energy 2022; 254 : 124280. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Islam MM, Pandey AK, Hasanuzzaman M, et al. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers Manage 2016; 126 : 177-204. [Article] [CrossRef] [Google Scholar]
  • Yang H, Xu Z, Cui H, et al. Cementitious composites integrated phase change materials for passive buildings: An overview. Constr Build Mater 2022; 361 : 129635. [Article] [CrossRef] [Google Scholar]
  • Bao X, Qi X, Cui H, et al. Experimental study on thermal response of a PCM energy pile in unsaturated clay. Renew Energy 2022; 185 : 790-803. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang G, Cao Z, Xiao S, et al. A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards. Renew Sustain Energy Rev 2022; 163 : 112509. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Said MA, Hassan H. Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit. Appl Energy 2018; 230 : 1380-1402. [Article] [CrossRef] [Google Scholar]
  • Shan K, Fan C, Wang J. Model predictive control for thermal energy storage assisted large central cooling systems. Energy 2019; 179 : 916-927. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li M, Lin Z, Sun Y, et al. Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems. Renew Energy 2020; 157 : 670-677. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jin X, Wu F, Xu T, et al. Experimental investigation of the novel melting point modified Phase-Change material for heat pump latent heat thermal energy storage application. Energy 2021; 216 : 119191. [Article] [CrossRef] [Google Scholar]
  • Li SF, Liu Z, Wang XJ. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Appl Energy 2019; 255 : 113667. [Article] [CrossRef] [Google Scholar]
  • Hofer G, Kotik J, Pröll T. Heat loss reduction and tap temperature equalization of a centralized domestic hot water system in a modernized pre-WWI residential building. J Building Eng 2023; 77 : 107506. [Article] [CrossRef] [Google Scholar]
  • Shalaby SM, Bek MA, El-Sebaii AA. Solar dryers with PCM as energy storage medium: A review. Renew Sustain Energy Rev 2014; 33 : 110-116. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sani AK, Singh RM, Amis T, et al. A review on the performance of geothermal energy pile foundation, its design process and applications. Renew Sustain Energy Rev 2019; 106 : 54-78. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cabeza LF, Castell A, Barreneche C, et al. Materials used as PCM in thermal energy storage in buildings: A review. Renew Sustain Energy Rev 2011; 15 : 1675-1695. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wong-Pinto LS, Milian Y, Ushak S. Progress on use of nanoparticles in salt hydrates as phase change materials. Renew Sustain Energy Rev 2020; 122 : 109727. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Beaupere N, Soupremanien U, Zalewski L. Nucleation triggering methods in supercooled phase change materials (PCM), a review. Thermochim Acta 2018; 670 : 184-201. [Article] [CrossRef] [Google Scholar]
  • Zahir MH, Mohamed SA, Saidur R, et al. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl Energy 2019; 240 : 793-817. [Article] [CrossRef] [Google Scholar]
  • Kumar N, Hirschey J, LaClair TJ, et al. Review of stability and thermal conductivity enhancements for salt hydrates. J Energy Storage 2019; 24 : 100794. [Article] [CrossRef] [Google Scholar]
  • Schmit H, Rathgeber C, Hoock P, et al. Critical review on measured phase transition enthalpies of salt hydrates in the context of solid-liquid phase change materials. Thermochim Acta 2020; 683 : 178477. [Article] [CrossRef] [Google Scholar]
  • Yu K, Liu Y, Yang Y. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties. Appl Energy 2021; 292 : 116845. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu H, Wang W, Zhang Y. Performance gap between thermochemical energy storage systems based on salt hydrates and materials. J Cleaner Production 2021; 313 : 127908. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hua W, Lv X, Zhang X, et al. Research progress of seasonal thermal energy storage technology based on supercooled phase change materials. J Energy Storage 2023; 67 : 107378. [Article] [CrossRef] [Google Scholar]
  • Dannemand M, Dragsted J, Fan J, et al. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures. Appl Energy 2016; 169 : 72-80. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Johansen JB, Dannemand M, Kong W, et al. Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling. Energy Procedia 2015; 70 : 249-256. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li X, Zhang J, Liu Y, et al. Supercooled sugar alcohols stabilized by alkali hydroxides for long-term room-temperature phase change solar-thermal energy storage. Chem Eng J 2023; 452 : 139328. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou G, Xiang Y. Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage. Sol Energy 2017; 155 : 1261-1272. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ling Z, Luo M, Song J, et al. A fast-heat battery system using the heat released from detonated supercooled phase change materials. Energy 2021; 219 : 119496. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Dannemand M, Kong W, Fan J, et al. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate. Energy Procedia 2015; 70 : 172-181. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang G, Xu C, Kong W, et al. Review on sodium acetate trihydrate in flexible thermal energy storages: Properties, challenges and applications. J Energy Storage 2021; 40 : 102780. [Article] [CrossRef] [Google Scholar]
  • Eanest Jebasingh B, Valan Arasu A. A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle dispersed organic phase change material for low-temperature applications. Mater Today Energy 2020; 16 : 100408. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhao Y, Zhang X, Xu X, et al. Research progress in nucleation and supercooling induced by phase change materials. J Energy Storage 2020; 27 : 101156. [Article] [CrossRef] [Google Scholar]
  • Shamseddine I, Pennec F, Biwole P, et al. Supercooling of phase change materials: A review. Renew Sustain Energy Rev 2022; 158 : 112172. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M, et al. Gas hydrates in sustainable chemistry. Chem Soc Rev 2020; 49 : 5225-5309. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Chalmers B. Principles of Solidification. Applied Solid State Physics . Boston: Springer, 1964. 161–170 [Google Scholar]
  • Orava J, Hewak DW, Greer AL. Fragile-to-strong crossover in supercooled liquid Ag-In-Sb-Te studied by ultrafast calorimetry. Adv Funct Mater 2015; 25 : 4851-4858. [Article] [CrossRef] [Google Scholar]
  • Le Gallo M, Sebastian A. An overview of phase-change memory device physics. J Phys D-Appl Phys 2020; 53 : 213002. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mullin JW, Raven KD. Nucleation in agitated solutions. Nature 1961; 190 : 251. [Article] [CrossRef] [Google Scholar]
  • Cui H, Wang P, Yang H, et al. Enhancing the heat transfer and photothermal conversion of salt hydrate phase change material for efficient solar energy utilization. J Energy Storage 2022; 49 : 104130. [Article] [CrossRef] [Google Scholar]
  • Kubota N, Fujisawa Y, Tadaki T. Effect of volume on the supercooling temperature for primary nucleation of potassium nitrate from aqueous solution. J Cryst Growth 1998; 89 : 545-552. [Article] [Google Scholar]
  • Lopez R, Haynes TE, Boatner LA, et al. Size effects in the structural phase transition of VO2 nanoparticles. Phys Rev B 2002; 65 : 224113. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mollova A, Androsch R, Mileva D, et al. Effect of supercooling on crystallization of polyamide 11. Macromolecules 2013; 46 : 828-835. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Safari A, Saidur R, Sulaiman FA, et al. A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev 2017; 70 : 905-919. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Taylor RA, Tsafnat N, Washer A. Experimental characterisation of sub-cooling in hydrated salt phase change materials. Appl Thermal Eng 2016; 93 : 935-938. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Solomon GR, Karthikeyan S, Velraj R. Sub cooling of PCM due to various effects during solidification in a vertical concentric tube thermal storage unit. Appl Thermal Eng 2013; 52 : 505-511. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Oike H, Suda M, Kamitani M, et al. Size effects on supercooling phenomena in strongly correlated electron systems: IrTe2 and θ-(BEDT-TTF)2RbZn(SCN)4 . Phys Rev B 2018; 97 : 085102. [Article] arxiv:1802.09739 [NASA ADS] [CrossRef] [Google Scholar]
  • Telkes M. Nucleation of supersaturated inorganic salt solutions. Ind Eng Chem 1952; 44 : 1308-1310. [Article] [CrossRef] [Google Scholar]
  • Lane GA. Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 1992; 27 : 135-160. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li X, Zhou Y, Nian H, et al. Phase change behavior of latent heat storage media based on calcium chloride hexahydrate composites containing strontium chloride hexahydrate and oxidation expandable graphite. Appl Thermal Eng 2016; 102 : 38-44. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang Y, Zhang X, Xu X, et al. Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials. J Mol Liquids 2019; 280 : 360-366. [Article] [Google Scholar]
  • Mao J, Dong X, Hou P, et al. Preparation research of novel composite phase change materials based on sodium acetate trihydrate. Appl Thermal Eng 2017; 118 : 817-825. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mao J, Hou P, Liu R, et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material. Appl Thermal Eng 2017; 119 : 585-592. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li X, Zhou Y, Nian H, et al. Preparation and thermal energy storage studies of CH3COONa·3H2O–KCl composites salt system with enhanced phase change performance. Appl Thermal Eng 2016; 102 : 708-715. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cui W, Yuan Y, Sun L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials. Renew Energy 2016; 99 : 1029-1037. [Article] [CrossRef] [Google Scholar]
  • Fashandi M, Leung SN. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage. Sol Energy Mater Sol Cells 2018; 178 : 259-265. [Article] [CrossRef] [Google Scholar]
  • Hu P, Lu DJ, Fan XY, et al. Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC. Sol Energy Mater Sol Cells 2011; 95 : 2645-2649. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Yang Y. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Sol Energy Mater Sol Cells 2017; 160 : 18-25. [Article] [CrossRef] [Google Scholar]
  • Liu Y, Liu W, Zhang S, et al. Preparation and characterization of new nano-particle mixed as thermal storage material. Appl Thermal Eng 2019; 163 : 114386. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xie N, Niu J, Wu T, et al. Fabrication and characterization of CaCl2·6H2O composite phase change material in the presence of Cs x WO3 nanoparticles. Sol Energy Mater Sol Cells 2019; 200 : 110034. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang XJ, Wu P, Qiu LM, et al. Analysis of the nucleation of nanofluids in the ice formation process. Energy Convers Manage 2010; 51 : 130-134. [Article] [CrossRef] [Google Scholar]
  • Yang Z, Yang Z, Li J, et al. Design of diatomite-based hydrated salt composites with low supercooling degree and enhanced heat transfer for thermal energy storage. Int J Energy Res 2019; 43 : 7058-7074. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang Y, Cao L, Zhang D. Overcoming the supercooling of hydrated salts: Three-dimensional graphene composite PCMs. Micro & Nano Lett 2018; 13 : 849-852. [Article] [CrossRef] [Google Scholar]
  • Cui W, Jia L, Chen Y, et al. Supercooling of water controlled by nanoparticles and ultrasound. Nanoscale Res Lett 2018; 13 : 145. [Article] [Google Scholar]
  • Marks S. An investigation of the thermal energy storage capacity of Glauber’s salt with respect to thermal cycling. Sol Energy 1980; 25 : 255-258. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Bao X, Yang H, Xu X, et al. Development of a stable inorganic phase change material for thermal energy storage in buildings. Sol Energy Mater Sol Cells 2020; 208 : 110420. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Shahbaz K, AlNashef IM, Lin RJT, et al. A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials. Sol Energy Mater Sol Cells 2016; 155 : 147-154. [Article] [CrossRef] [Google Scholar]
  • Cabeza LF, Svensson G, Hiebler S, et al. Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material. Appl Thermal Eng 2003; 23 : 1697-1704. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Efimova A, Pinnau S, Mischke M, et al. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling. Thermochim Acta 2014; 575 : 276-278. [Article] [CrossRef] [Google Scholar]
  • Tang W, Kardani O, Cui H. Robust evaluation of self-healing efficiency in cementitious materials—A review. Constr Build Mater 2015; 81 : 233-247. [Article] [CrossRef] [Google Scholar]
  • Lan XZ, Tan ZC, Shi Q, et al. A novel gelling method for stabilization of phase change material Na2HPO4·12H2O with sodium alginate grafted sodium acrylate. Thermochim Acta 2007; 463 : 18-20. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Yu K, Gao X, et al. Enhanced thermal properties of hydrate salt/poly (acrylate sodium) copolymer hydrogel as form-stable phase change material via incorporation of hydroxyl carbon nanotubes. Sol Energy Mater Sol Cells 2020; 208 : 110387. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Yang Y, Li S. Graphene oxide modified hydrate salt hydrogels: Form-stable phase change materials for smart thermal management. J Mater Chem A 2016; 4 : 18134-18143. [Article] [Google Scholar]
  • Karimineghlani P, Emmons E, Green MJ, et al. A temperature-responsive poly(vinyl alcohol) gel for controlling fluidity of an inorganic phase change material. J Mater Chem A 2017; 5 : 12474-12482. [Article] [CrossRef] [Google Scholar]
  • Rathore PKS, Shukla SK. Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review. Energy Buildings 2021; 236 : 110799. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fu L, Wang Q, Ye R, et al. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation. Renew Energy 2017; 114 : 733-743. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Rao Z, Xu T, Liu C, et al. Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization. Sol Energy Mater Sol Cells 2018; 188 : 6-17. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Rathore PKS, Shukla S. Improvement in thermal properties of PCM/Expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications. Renew Energy 2021; 176 : 295-304. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xie N, Luo J, Li Z, et al. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage. Sol Energy Mater Sol Cells 2019; 189 : 33-42. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu J, Zhu C, Liang W, et al. Experimental investigation on micro-scale phase change material based on sodium acetate trihydrate for thermal storage. Sol Energy 2019; 193 : 413-421. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xie N, Niu J, Zhong Y, et al. Development of polyurethane acrylate coated salt hydrate/diatomite form-stable phase change material with enhanced thermal stability for building energy storage. Constr Build Mater 2020; 259 : 119714. [Article] [CrossRef] [Google Scholar]
  • Xu T, Wu F, Zou T, et al. Development of diatomite-based shape-stabilized composite phase change material for use in floor radiant heating. J Mol Liquids 2022; 348 : 118372. [Article] [Google Scholar]
  • Mohseni E, Tang W, Khayat KH, et al. Thermal performance and corrosion resistance of structural-functional concrete made with inorganic PCM. Constr Build Mater 2020; 249 : 118768. [Article] [CrossRef] [Google Scholar]
  • Álvarez-Bermúdez O, Adam-Cervera I, Aguado-Hernándiz A, et al. Magnetic polyurethane microcarriers from nanoparticle-stabilized emulsions for thermal energy storage. ACS Sustain Chem Eng 2020; 8 : 17956-17966. [Article] [CrossRef] [Google Scholar]
  • Liu Z, Chen Z, Yu F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Sol Energy Mater Sol Cells 2019; 200 : 110004. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang Z, Lian Y, Xu X, et al. Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials. Appl Energy 2019; 255 : 113830. [Article] [CrossRef] [Google Scholar]
  • Li M, Wang W, Zhang Z, et al. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage. Ind Eng Chem Res 2017; 56 : 3297-3308. [Article] [CrossRef] [Google Scholar]
  • Liu C, Wang C, Li Y, et al. Preparation and characterization of sodium thiosulfate pentahydrate/silica microencapsulated phase change material for thermal energy storage. RSC Adv 2017; 7 : 7238-7249. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Huang J, Wang T, Zhu P, et al. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim Acta 2013; 557 : 1-6. [Article] [CrossRef] [Google Scholar]
  • Purohit BK, Sistla VS. Inorganic salt hydrate for thermal energy storage application: A review. Energy Storage 2021; 3 : e212. [Article] [CrossRef] [Google Scholar]
  • Dixit P, Reddy VJ, Parvate S, et al. Salt hydrate phase change materials: Current state of art and the road ahead. J Energy Storage 2022; 51 : 104360. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li Y, Li C, Lin N, et al. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage. Mater Today Energy 2021; 22 : 100866. [Article] [CrossRef] [Google Scholar]
  • Zheng M, Xie C, Liu J, et al. Composite hydrate salt Na2 HPO4·12H2 O–Na2 SO4·10H2O and its thermal storage properties. Emerging Mater Res 2019; 8 : 68-76. [Article] [CrossRef] [Google Scholar]
  • Shahid UB, Abdala A. A critical review of phase change material composite performance through Figure-of-Merit analysis: Graphene vs. Boron Nitride. Energy Storage Mater 2021; 34 : 365-387. [Article] [CrossRef] [Google Scholar]
  • Liu L, Su D, Tang Y, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew Sustain Energy Rev 2016; 62 : 305-317. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wu S, Yan T, Kuai Z, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Mater 2020; 25 : 251-295. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Tian H, Du L, Wei X, et al. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Appl Energy 2017; 204 : 525-530. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sharshir SW, El-Shafai NM, Ibrahim MM, et al. Effect of copper oxide/cobalt oxide nanocomposite on phase change material for direct/indirect solar energy applications: Experimental investigation. J Energy Storage 2021; 38 : 102526. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Deng Y, Li J, Qian T, et al. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chem Eng J 2016; 295 : 427-435. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Petersen EM, Rao RG, Vance BC, et al. SiO2/SiC supports with tailored thermal conductivity to reveal the effect of surface temperature on Ru-catalyzed CO2 methanation. Appl Catal B-Environ 2021; 286 : 119904. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kim HG, Qudoos A, Jeon IK, et al. Assessment of PCM/SiC-based composite aggregate in concrete: Energy storage performance. Constr Build Mater 2020; 258 : 119637. [Article] [CrossRef] [Google Scholar]
  • Guerra V, Wan C, McNally T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog Mater Sci 2019; 100 : 170-186. [Article] [CrossRef] [Google Scholar]
  • Cheng P, Chen X, Gao H, et al. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy 2021; 85 : 105948. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang L, Zhou K, Wei Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy 2019; 233-234 : 208-219. [Article] [CrossRef] [Google Scholar]
  • Touloukian Y, Makita T. Thermophysical properties of matter-the TPRC data series. Volume 6. Specific heat-nonmetallic liquids and gases. Technical Report. 1970. file:///C:/Users/Administrator/Downloads/ADA951940.pdf [Google Scholar]
  • Chen G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons . Oxford: Oxford University Press, 2005 [CrossRef] [Google Scholar]
  • Nika DL, Pokatilov EP, Askerov AS, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys Rev B 2009; 79 : 155413. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yuan K, Shi J, Aftab W, et al. Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv Funct Mater 2020; 30 : 1904228. [Article] [CrossRef] [Google Scholar]
  • Xiao Q, Zhang M, Fan J, et al. Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material. Sol Energy Mater Sol Cells 2019; 199 : 91-98. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wu F, Lin Z, Xu T, et al. Development and thermal properties of a novel sodium acetate trihydrate-Acetamide-micron/nano aluminum nitride composite phase change material. Mater Des 2020; 196 : 109113. [Article] [CrossRef] [Google Scholar]
  • Dannemand M, Johansen JB, Furbo S. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Sol Energy Mater Sol Cells 2016; 145 : 287-295. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li X, Zhou Y, Nian H, et al. Advanced nanocomposite phase change material based on calcium chloride hexahydrate with aluminum oxide nanoparticles for thermal energy storage. Energy Fuels 2017; 31 : 6560-6567. [Article] [CrossRef] [Google Scholar]
  • Tang A, Chen W, Shao X, et al. Experimental investigation of aluminum nitride/carbon fiber-modified composite phase change materials for battery thermal management. Intl J Energy Res 2022; 46 : 12737-12757. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • He Y, Zhang N, Yuan Y, et al. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive. J Therm Anal Calorim 2018; 133 : 859-867. [Article] [CrossRef] [Google Scholar]
  • Tie J, Liu X, Tie S, et al. Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO4·10H2O. J Therm Anal Calorim 2019; 139 : 855-862. [Article] [Google Scholar]
  • Mehrali M, ten Elshof JE, Shahi M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chem Eng J 2021; 405 : 126624. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cui K, Liu L, Ma F, et al. Enhancement of thermal conductivity of Ba(OH)2·8H2 O phase change material by graphene nanoplatelets. Mater Res Express 2018; 5 : 065522. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fu W, Lu Y, Zhang R, et al. Developing NaAc∙3H2O-based composite phase change material using glycine as temperature regulator and expanded graphite as supporting material for use in floor radiant heating. J Mol Liquids 2020; 317 : 113932. [Article] [Google Scholar]
  • Xiao Q, Yuan W, Li L, et al. Fabrication and characteristics of composite phase change material based on Ba(OH)2·8H2O for thermal energy storage. Sol Energy Mater Sol Cells 2018; 179 : 339-345. [Article] [CrossRef] [Google Scholar]
  • Li TX, Wu DL, He F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int J Heat Mass Transfer 2017; 115 : 148-157. [Article] [NASA ADS] [Google Scholar]
  • Zou T, Fu W, Liang X, et al. Preparation and performance of modified calcium chloride hexahydrate composite phase change material for air-conditioning cold storage. Int J Refrigeration 2018; 95 : 175-181. [Article] [CrossRef] [Google Scholar]
  • Fu W, Zou T, Liang X, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system. Appl Thermal Eng 2018; 138 : 618-626. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jin X, Xiao Q, Xu T, et al. Thermal conductivity enhancement of a sodium acetate trihydrate–potassium chloride–urea/expanded graphite composite phase–change material for latent heat thermal energy storage. Energy Buildings 2021; 231 : 110615. [Article] [CrossRef] [Google Scholar]
  • Fu W, Zou T, Liang X, et al. Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate-urea/fumed silica for radiant floor heating system. Appl Thermal Eng 2019; 162 : 114253. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fang Y, Ding Y, Tang Y, et al. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating. Appl Thermal Eng 2019; 150 : 1177-1185. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zeinelabdein R, Omer S, Gan G. Critical review of latent heat storage systems for free cooling in buildings. Renew Sustain Ener Rev 2018; 82 : 2843-2868. [Article] [CrossRef] [Google Scholar]
  • Li G, Zhang B, Li X, et al. The preparation, characterization and modification of a new phase change material: CaCl2·6H2O–MgCl2·6H2O eutectic hydrate salt. Sol Energy Mater Sol Cells 2014; 126 : 51-55. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Marín PE, Ushak S, de Gracia A, et al. Assessing corrosive behaviour of commercial phase change materials in the 21–25°C temperature range. J Energy Storage 2020; 32 : 101711. [Article] [CrossRef] [Google Scholar]
  • Moreno P, Miró L, Solé A, et al. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications. Appl Energy 2014; 125 : 238-245. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Solé A, Miró L, Barreneche C, et al. Corrosion test of salt hydrates and vessel metals for thermochemical energy storage. Energy Procedia 2014; 48 : 431-435. [Article] [CrossRef] [Google Scholar]
  • Calabrese L, Brancato V, Palomba V, et al. An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages. Renew Energy 2019; 138 : 1018-1027. [Article] [CrossRef] [Google Scholar]
  • Honcova P, Pilar R, Danielik V, et al. Suppressing supercooling in magnesium nitrate hexahydrate and evaluating corrosion of aluminium alloy container for latent heat storage application. J Therm Anal Calorim 2017; 129 : 1573-1581. [Article] [CrossRef] [Google Scholar]
  • Danielik V, Šoška P, Felgerová K, et al. The corrosion of carbon steel in nitrate hydrates used as phase change materials. Mater Corrosion 2017; 68 : 416-422. [Article] [CrossRef] [Google Scholar]
  • Zhao T, Zheng M, Munis A, et al. Corrosion behaviours of typical metals in molten hydrate salt of Na2HPO4·12H2O–Na2SO4·10H2O for thermal energy storage. Corrosion Eng Sci Tech 2019; 54 : 379-388. [Article] [CrossRef] [Google Scholar]
  • Solé A, Miró L, Barreneche C, et al. Corrosion of metals and salt hydrates used for thermochemical energy storage. Renew Energy 2015; 75 : 519-523. [Article] [CrossRef] [Google Scholar]
  • Devanuri JK, Gaddala UM, Kumar V. Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage. Mater Renew Sustain Energy 2020; 9 : 24. [Article] [CrossRef] [Google Scholar]
  • Cabeza LF, Illa J, Roca J, et al. Middle term immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36°C temperature range. Werkstoffe und Korrosion 2001; 52 : 748. [Article] [CrossRef] [Google Scholar]
  • Cabeza LF, Illa J, Roca J, et al. Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36°C temperature range. Mater Corrosion 2001; 52 : 140-146. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Di Franco F, Zaffora A, Megna B, et al. Heterogeneous crystallization of zinc hydroxystannate on galvanized steel for enhancing the bond strength at the rebar/concrete interface. Chem Eng J 2021; 405 : 126943. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Farid MM, Khudhair AM, Razack SAK, et al. A review on phase change energy storage: materials and applications. Energy Convers Manage 2004; 45 : 1597-1615. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ding Z, Wu W, Chen Y, et al. Dynamic simulation and parametric study of solar water heating system with phase change materials in different climate zones. Sol Energy 2020; 205 : 399-408. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kılıçkap S, El E, Yıldız C. Investigation of the effect on the efficiency of phase change material placed in solar collector tank. Thermal Sci Eng Prog 2018; 5 : 25-31. [Article] [CrossRef] [Google Scholar]
  • Douvi E, Pagkalos C, Dogkas G, et al. Phase change materials in solar domestic hot water systems: A review. Int J Thermofluids 2021; 10 : 100075. [Article] [CrossRef] [Google Scholar]
  • Madhankumar S, Viswanathan K, Wu W, et al. Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization. Sol Energy 2023; 249 : 667-683. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Babar OA, Arora VK, Nema PK, et al. Effect of PCM assisted flat plate collector solar drying of green chili on retention of bioactive compounds and control of aflatoxins development. Sol Energy 2021; 229 : 102-111. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Albdour SA, Haddad Z, Sharaf OZ, et al. Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage: Fundamentals, recent advances, and future directions. Prog Energy Combust Sci 2022; 93 : 101037. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ma T, Yang H, Zhang Y, et al. Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renew Sustain Energy Rev 2015; 43 : 1273-1284. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mardiana-Idayu A, Riffat SB. Review on heat recovery technologies for building applications. Renew Sustain Energy Rev 2012; 16 : 1241-1255. [Article] [CrossRef] [Google Scholar]
  • Sonnick S, Erlbeck L, Gaedtke M, et al. Passive room conditioning using phase change materials: Demonstration of a long-term real size experiment. Int J Energy Res 2020; 44 : 7047-7056. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sonnick S, Erlbeck L, Schlachter K, et al. Temperature stabilization using salt hydrate storage system to achieve thermal comfort in prefabricated wooden houses. Energy Buildings 2018; 164 : 48-60. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • de Gracia A, Rincón L, Castell A, et al. Life cycle assessment of the inclusion of phase change materials (PCM) in experimental buildings. Energy Buildings 2010; 42 : 1517-1523. [Article] [CrossRef] [Google Scholar]
  • Mukhamet T, Kobeyev S, Nadeem A, et al. Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations. Energy 2021; 215 : 119102. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Barla M, Di Donna A. Energy tunnels: Concept and design aspects. Underground Space 2018; 3 : 268-276. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fadejev J, Simson R, Kurnitski J, et al. A review on energy piles design, sizing and modelling. Energy 2017; 122 : 390-407. [Article] [CrossRef] [Google Scholar]
  • Makasis N, Narsilio GA. Energy diaphragm wall thermal design: The effects of pipe configuration and spacing. Renew Energy 2020; 154 : 476-487. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Alavy M, Peiris M, Wang J, et al. Assessment of a novel phase change material-based thermal caisson for geothermal heating and cooling. Energy Convers Manage 2021; 234 : 113928. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cao Z, Zhang G, Liu Y, et al. Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile. Renew Energy 2022; 184 : 374-390. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mousa MM, Bayomy AM, Saghir MZ. Long-term performance investigation of a GSHP with actual size energy pile with PCM. Appl Thermal Eng 2022; 210 : 118381. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Du T, Li Y, Bao X, et al. Thermo-mechanical performance of a phase change energy pile in saturated sand. Symmetry 2020; 12 : 1781. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Bao X, Shi J, Chen G, et al. Laboratory tests and numerical simulation of the thermal-mechanical response of a fiber-reinforced phase change concrete pile. Appl Sci 2023; 13 : 11853. [Article] [CrossRef] [Google Scholar]
  • Bao X, Qi X, Cui H, et al. Comparison study on the performance of a novel and traditional energy piles by laboratory tests. Symmetry 2021; 13 : 1958. [Article] [CrossRef] [Google Scholar]
  • Han C, Shen Y, Chen K, et al. Characteristics and energy performance of novel MicroPCM C50 energy pile in cooling mode. Energy Buildings 2022; 274 : 112442. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Shahidi S, Hajialilue-Bonab M, Tohidvand HR, et al. Experimental investigation on the efficiency of the phase change materials for enhancing the thermal performance of energy piles in sandy soils. Energy Buildings 2023; 298 : 113544. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Warner J, Liu X, Shi L, et al. A novel shallow bore ground heat exchanger for ground source heat pump applications—Model development and validation. Appl Thermal Eng 2020; 164 : 114460. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang M, Liu X, Biswas K, et al. A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material. Appl Thermal Eng 2019; 162 : 114297. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cao Z, Zhang G, Wu Y, et al. Energy storage potential analysis of phase change material (PCM) energy storage units based on tunnel lining ground heat exchangers. Appl Thermal Eng 2023; 235 : 121403. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Dong Z, Cui H, Tang W, et al. Development of hollow steel ball macro-encapsulated PCM for thermal energy storage concrete. Materials 2016; 9 : 59. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cui H, Tang W, Qin Q, et al. Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball. Appl Energy 2017; 185 : 107-118. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cui H, Zou J, Gong Z, et al. Study on the thermal and mechanical properties of steel fibre reinforced PCM-HSB concrete for high performance in energy piles. Constr Build Mater 2022; 350 : 128822. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.