Open Access
Issue |
Natl Sci Open
Volume 3, Number 4, 2024
Special Topic: Active Matter
|
|
---|---|---|
Article Number | 20230066 | |
Number of page(s) | 13 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20230066 | |
Published online | 05 January 2024 |
- Reimann P. Brownian motors: Noisy transport far from equilibrium. Phys Rep 2002; 361: 57-265. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Astumian RD, Hänggi P. Brownian motors. Phys Today 2002; 55: 33-39. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Reichhardt CJO, Reichhardt C. Ratchet effects in active matter systems. Annu Rev Condens Matter Phys 2017; 8: 51-75. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Reimann P, Bartussek R, Häußler R, et al. Brownian motors driven by temperature oscillations. Phys Lett A 1996; 215: 26-31. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bao JD, Abe Y, Zhuo YZ. Inhomogeneous friction leading to current in periodic system. Physica A-Statistical Mech its Appl 1999; 265: 111-118. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bug ALR, Berne BJ. Shaking-induced transition to a nonequilibrium state. Phys Rev Lett 1987; 59: 948. [Article] [CrossRef] [PubMed] [Google Scholar]
- Astumian RD, Bier M. Fluctuation driven ratchets: Molecular motors. Phys Rev Lett 1994; 72: 1766-1769. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Prost J, Chauwin JF, Peliti L, et al. Asymmetric pumping of particles. Phys Rev Lett 1994; 72: 2652-2655. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kettner C, Reimann P, Hänggi P, et al. Drift ratchet. Phys Rev E 2000; 61: 312-323. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pietzonka P, Fodor É, Lohrmann C, et al. Autonomous engines driven by active matter: Energetics and design principles. Phys Rev X 2019; 9: 041032. [Article]arxiv:1905.00373 [NASA ADS] [Google Scholar]
- Galajda P, Keymer J, Chaikin P, et al. A wall of funnels concentrates swimming bacteria. J Bacteriol 2007; 189: 8704-8707. [Article] [CrossRef] [PubMed] [Google Scholar]
- Elizabeth Hulme S, DiLuzio WR, Shevkoplyas SS, et al. Using ratchets and sorters to fractionate motile cells of Escherichia coli by length. Lab Chip 2008; 8: 1888. [Article] [CrossRef] [PubMed] [Google Scholar]
- Talbot J, Wildman RD, Viot P. Kinetics of a frictional granular motor. Phys Rev Lett 2011; 107: 138001. [Article]arxiv:1108.5311 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Nourhani A, Crespi VH, Lammert PE. Guiding chiral self-propellers in a periodic potential. Phys Rev Lett 2015; 115: 118101. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ai BQ. Ratchet transport powered by chiral active particles. Sci Rep 2016; 6: 18740. [Article]arxiv:1612.08174 [Google Scholar]
- Li Y, Ghosh PK, Marchesoni F, et al. Manipulating chiral microswimmers in a channel. Phys Rev E 2014; 90: 062301. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kumar N, Soni H, Ramaswamy S, et al. Flocking at a distance in active granular matter. Nat Commun 2014; 5: 4688. [Article]arxiv:1402.4262 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wioland H, Woodhouse FG, Dunkel J, et al. Confinement stabilizes a bacterial suspension into a spiral vortex. Phys Rev Lett 2013; 110: 268102. [Article]arxiv:1304.2875 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Angelani L, Di Leonardo R, Ruocco G. Self-starting micromotors in a bacterial bath. Phys Rev Lett 2009; 102: 048104. [Article]arxiv:0812.2375 [Google Scholar]
- Di Leonardo R, Angelani L, Dell’Arciprete D, et al. Bacterial ratchet motors. Proc Natl Acad Sci USA 2010; 107: 9541-9545. [Article]arxiv:0910.2899 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sokolov A, Apodaca MM, Grzybowski BA, et al. Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA 2010; 107: 969-974. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Angelani L, Di Leonardo R. Numerical modeling of bacteria propelled micromotors. Comput Phys Commun 2011; 182: 1970-1973. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li H, Wang C, Tian W, et al. Spontaneous symmetry breaking induced unidirectional rotation of a chain-grafted colloidal particle in the active bath. Soft Matter 2017; 13: 8031-8038. [Article]arxiv:1705.05054 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang C, Li H, Ma Y, et al. Microrotor of a chain-grafted colloidal disk immersed in the active bath: The impact of particle concentration, grafting density, and chain rigidity. J Chem Phys 2018; 149: 164902. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li H, Zhang HP. Asymmetric gear rectifies random robot motion. EPL 2013; 102: 50007. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cates ME, Tailleur J. Motility-induced phase separation. Annu Rev Condens Matter Phys 2015; 6: 219-244. [Article]arxiv:1406.3533 [NASA ADS] [CrossRef] [Google Scholar]
- Buttinoni I, Bialké J, Kümmel F, et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys Rev Lett 2013; 110: 238301. [Article]arxiv:1305.4185 [CrossRef] [PubMed] [Google Scholar]
- Fily Y, Marchetti MC. Athermal phase separation of self-propelled particles with no alignment. Phys Rev Lett 2012; 108: 235702. [Article]arxiv:1201.4847 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Redner GS, Hagan MF, Baskaran A. Structure and dynamics of a phase-separating active colloidal fluid. Phys Rev Lett 2013; 110: 055701. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shan W, Zhang F, Tian W, et al. Assembly structures and dynamics of active colloidal cells. Soft Matter 2019; 15: 4761-4770. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mokhtari Z, Aspelmeier T, Zippelius A. Collective rotations of active particles interacting with obstacles. EPL 2017; 120: 14001. [Article] [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.