Issue |
Natl Sci Open
Volume 3, Number 4, 2024
Special Topic: Active Matter
|
|
---|---|---|
Article Number | 20230079 | |
Number of page(s) | 23 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20230079 | |
Published online | 29 March 2024 |
- Shaebani MR, Wysocki A, Winkler RG, et al. Computational models for active matter. Nat Rev Phys 2020; 2: 181-199. [Article]arxiv:1910.02528 [NASA ADS] [CrossRef] [Google Scholar]
- Needleman D, Dogic Z. Active matter at the interface between materials science and cell biology. Nat Rev Mater 2017; 2: 1-4. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fily Y, Marchetti MC. Athermal phase separation of self-propelled particles with no alignment. Phys Rev Lett 2012; 108: 235702. [Article]arxiv:1201.4847 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cates ME, Tailleur J. Motility-induced phase separation. Annu Rev Condens Matter Phys 2015; 6: 219-244. [Article]arxiv:1406.3533 [NASA ADS] [CrossRef] [Google Scholar]
- Tailleur J, Cates ME. Statistical mechanics of interacting run-and-tumble bacteria. Phys Rev Lett 2008; 100: 218103. [Article]arxiv:0803.1069 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ma Z, Yang M, Ni R. Dynamic assembly of active colloids: Theory and simulation. Advcd Theor Sims 2020; 3: 2000021. [Article] [CrossRef] [Google Scholar]
- Ni R, Belli S, van Roij R, et al. Glassy dynamics, spinodal fluctuations, and the kinetic limit of nucleation in suspensions of colloidal hard rods. Phys Rev Lett 2010; 105: 088302. [Article]arxiv:1005.4571 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yan J, Han M, Zhang J, et al. Reconfiguring active particles by electrostatic imbalance. Nat Mater 2016; 15: 1095-1099. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bricard A, Caussin JB, Desreumaux N, et al. Emergence of macroscopic directed motion in populations of motile colloids. Nature 2013; 503: 95-98. [Article]arxiv:1311.2017 [CrossRef] [PubMed] [Google Scholar]
- Sanchez T, Chen DTN, Decamp SJ, et al. Spontaneous motion in hierarchically assembled active matter. Nature 2012; 491: 431-434. [Article]arxiv:1301.1122 [CrossRef] [PubMed] [Google Scholar]
- Keber FC, Loiseau E, Sanchez T, et al. Topology and dynamics of active nematic vesicles. Science 2014; 345: 1135-1139. [Article]arxiv:1409.1836 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schaller V, Weber C, Semmrich C, et al. Polar patterns of driven filaments. Nature 2010; 467: 73-77. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sumino Y, Nagai KH, Shitaka Y, et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 2012; 483: 448-452. [Article] [CrossRef] [PubMed] [Google Scholar]
- Szent-Györgyi AG. The early history of the biochemistry of muscle contraction. J Gen Physiol 2004; 123: 631-641. [Article] [CrossRef] [PubMed] [Google Scholar]
- Murrell M, Oakes PW, Lenz M, et al. Forcing cells into shape: The mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 2015; 16: 486-498. [Article] [CrossRef] [PubMed] [Google Scholar]
- Soares e Silva M, Depken M, Stuhrmann B, et al. Active multistage coarsening of actin networks driven by myosin motors. Proc Natl Acad Sci USA 2011; 108: 9408-9413. [Article] [CrossRef] [PubMed] [Google Scholar]
- Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z für Naturforschung C 1973; 28: 693-703. [Article] [CrossRef] [Google Scholar]
- Jülicher F, Seifert U. Shape equations for axisymmetric vesicles: A clarification. Phys Rev E 1994; 49: 4728-4731. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jülicher F, Lipowsky R. Domain-induced budding of vesicles. Phys Rev Lett 1993; 70: 2964-2967. [Article] [CrossRef] [PubMed] [Google Scholar]
- Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys Rev E 2004; 69: 031903. [Article]arxiv:cond-mat/0303656 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yi X, Shi X, Gao H. Cellular uptake of elastic nanoparticles. Phys Rev Lett 2011; 107: 098101. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Park BW, Zhuang J, Yasa O, et al. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 2017; 11: 8910-8923. [Article] [Google Scholar]
- Wang W, Wu Z, Lin X, et al. Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane. J Am Chem Soc 2019; 141: 6601-6608. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li Q, Liu L, Huo H, et al. Nanosized Janus AUNR-Pt motor for enhancing NIR-II photoacoustic imaging of deep tumor and Pt2+ ion-based chemotherapy. ACS Nano 2022; 16: 7947-7960. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pal M, Somalwar N, Singh A, et al. Maneuverability of magnetic nanomotors inside living cells. Adv Mater 2018; 30: 1800429. [Article] [CrossRef] [Google Scholar]
- Xing J, Yin T, Li S, et al. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv Funct Mater 2021; 31: 2008262. [Article] [CrossRef] [Google Scholar]
- Tang S, Zhang F, Gong H, et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 2020; 5: eaba6137. [Article] [Google Scholar]
- Barnhart EL, Lee KC, Keren K, et al. An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol 2011, 9: e1001059 [Google Scholar]
- Girard P, Prost J, Bassereau P. Passive or active fluctuations in membranes containing proteins. Phys Rev Lett 2005; 94: 088102. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bechinger C, Di Leonardo R, Löwen H, et al. Active particles in complex and crowded environments. Rev Mod Phys 2016; 88: 045006. [Article]arxiv:1602.00081 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Mallory SA, Valeriani C, Cacciuto A. An active approach to colloidal self-assembly. Annu Rev Phys Chem 2018; 69: 59-79. [Article]arxiv:2102.11741 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Romanczuk P, Bär M, Ebeling W, et al. Active Brownian particles. Eur Phys J Spec Top 2012; 202: 1-162. [Article]arxiv:1202.2442 [NASA ADS] [CrossRef] [Google Scholar]
- ten Hagen B, van Teeffelen S, Löwen H. Brownian motion of a self-propelled particle. J Phys-Condens Matter 2011; 23: 194119. [Article]arxiv:1005.1343 [CrossRef] [PubMed] [Google Scholar]
- Diluzio WR, Turner L, Mayer M, et al. Escherichia coli swim on the right-hand side. Nature 2005; 435: 1271-1274. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Friedrich BM, Jülicher F. The stochastic dance of circling sperm cells: Sperm chemotaxis in the plane. New J Phys 2008; 10: 123025. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- ten Hagen B, Wittkowski R, Takagi D, et al. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?. J Phys-Condens Matter 2015; 27: 194110. [Article]arxiv:1410.6707 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Allain JM, Storm C, Roux A, et al. Fission of a multiphase membrane tube. Phys Rev Lett 2004; 93: 158104. [Article]arxiv:physics/0404086 [CrossRef] [PubMed] [Google Scholar]
- Heinrich M, Tian A, Esposito C, et al. Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc Natl Acad Sci USA 2010; 107: 7208-7213. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Baumgart T, Hess ST, Webb WW. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003; 425: 821-824. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Brochard F, Lennon JF. Frequency spectrum of the flicker phenomenon in erythrocytes. J Phys France 1975; 36: 1035-1047. [Article] [Google Scholar]
- Brandt EG, Braun AR, Sachs JN, et al. Interpretation of fluctuation spectra in lipid bilayer simulations. Biophys J 2011; 100: 2104-2111. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Marrink SJ, Mark AE. Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 2001; 105: 6122-6127. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hernández-Muñoz J, Bresme F, Tarazona P, et al. Bending modulus of lipid membranes from density correlation functions. J Chem Theor Comput 2022; 18: 3151-3163. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15: 541-555. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 2015; 16: 543-552. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mendes BB, Conniot J, Avital A, et al. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2022; 2: 24. [Article] [Google Scholar]
- Nguyen J, Szoka FC. Nucleic acid delivery: The missing pieces of the puzzle?. Acc Chem Res 2012; 45: 1153-1162. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yu M, Wu J, Shi J, et al. Nanotechnology for protein delivery: Overview and perspectives. J Control Release 2016; 240: 24-37. [Article] [CrossRef] [PubMed] [Google Scholar]
- Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nat Rev Mater 2020; 5: 127-148. [Article] [Google Scholar]
- Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater 2023; 8: 282-300. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Nie S, Xing Y, Kim GJ, et al. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9: 257-288. [Article] [CrossRef] [PubMed] [Google Scholar]
- Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9: 615-627. [Article] [Google Scholar]
- Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14: 1-16. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011; 40: 233-245. [Article] [Google Scholar]
- Stewart MP, Sharei A, Ding X, et al. In vitro and ex vivo strategies for intracellular delivery. Nature 2016; 538: 183-192. [Article] [CrossRef] [PubMed] [Google Scholar]
- Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 2004; 22: 47-52. [Article] [CrossRef] [PubMed] [Google Scholar]
- Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307: 538-544. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu J, Wen J, Zhang Z, et al. Voyage inside the cell: Microsystems and nanoengineering for intracellular measurement and manipulation. Microsyst Nanoeng 2015; 1: 15020. [Article] [CrossRef] [Google Scholar]
- Venugopalan PL, Esteban-Fernández de Ávila B, Pal M, et al. Fantastic voyage of nanomotors into the cell. ACS Nano 2020; 14: 9423-9439. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang W, Li S, Mair L, et al. Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed 2014; 53: 3201-3204. [Article] [CrossRef] [PubMed] [Google Scholar]
- Esteban-Fernández de Ávila B, Angell C, Soto F, et al. Acoustically propelled nanomotors for intracellular sirna delivery. ACS Nano 2016; 10: 4997-5005. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hansen-Bruhn M, de Ávila BEF, Beltrán-Gastélum M, et al. Active intracellular delivery of a cas9/sgrna complex using ultrasound-propelled nanomotors. Angew Chem Int Ed 2018; 57: 2657-2661. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dobson J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther 2006; 13: 283-287. [Article] [CrossRef] [PubMed] [Google Scholar]
- Srivastava SK, Medina-Sánchez M, Koch B, et al. Medibots: Dual-action biogenic microdaggers for single-cell surgery and drug release. Adv Mater 2016; 28: 832-837. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pantarotto D, Briand JP, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004; : 16-17. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi Kam NW, Jessop TC, Wender PA, et al. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004; 126: 6850-6851. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cai D, Mataraza JM, Qin ZH, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2005; 2: 449-454. [Article] [CrossRef] [PubMed] [Google Scholar]
- Berret JF. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nat Commun 2016; 7: 10134. [Article]arxiv:1512.01183 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pal M, Dasgupta D, Somalwar N, et al. Helical nanobots as mechanical probes of intra- and extracellular environments. J Phys-Condens Matter 2020; 32: 224001. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu Z, Wu Y, He W, et al. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 2013; 52: 7000-7003. [Article] [CrossRef] [PubMed] [Google Scholar]
- Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, et al. Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano 2019; 13: 12171-12183. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015; 9: 8655-8671. [Article] [Google Scholar]
- Yuan H, Li J, Bao G, et al. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett 2010; 105: 138101. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 2005; 102: 9469-9474. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 2010; 5: 579-583. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Frey F, Ziebert F, Schwarz US. Stochastic dynamics of nanoparticle and virus uptake. Phys Rev Lett 2019; 122: 088102. [Article]arxiv:1905.01297 [CrossRef] [PubMed] [Google Scholar]
- Yue T, Zhang X. Molecular modeling of the pathways of vesicle-membrane interaction. Soft Matter 2013; 9: 559-569. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Reynwar BJ, Illya G, Harmandaris VA, et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 2007; 447: 461-464. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yue T, Zhang X. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 2012; 6: 3196-3205. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen P, Xu Z, Zhu G, et al. Cellular uptake of active particles. Phys Rev Lett 2020; 124: 198102. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li Y, ten Wolde PR. Shape transformations of vesicles induced by swim pressure. Phys Rev Lett 2019; 123: 148003. [Article]arxiv:1902.02684 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Vutukuri HR, Hoore M, Abaurrea-Velasco C, et al. Active particles induce large shape deformations in giant lipid vesicles. Nature 2020; 586: 52-56. [Article]arxiv:1911.02381 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature 2010; 463: 485-492. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nogales E. Structural insights into microtubule function. Annu Rev Biochem 2000; 69: 277-302. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984; 312: 237-242. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112: 453-465. [Article] [CrossRef] [PubMed] [Google Scholar]
- Browicz T. Further observation of motion phenomena on red blood cells in pathological states. Zbl med Wissen 1890, 28: 625–627 [Google Scholar]
- Lau AWC, Hoffman BD, Davies A, et al. Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett 2003; 91: 198101. [Article]arxiv:cond-mat/0309510 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ben-Isaac E, Park YK, Popescu G, et al. Effective temperature of red-blood-cell membrane fluctuations. Phys Rev Lett 2011; 106: 238103. [Article]arxiv:1102.4508 [CrossRef] [PubMed] [Google Scholar]
- Le Goff L, Amblard F, Furst EM. Motor-driven dynamics in actin-myosin networks. Phys Rev Lett 2001; 88: 018101. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mizuno D, Tardin C, Schmidt CF, et al. Nonequilibrium mechanics of active cytoskeletal networks. Science 2007; 315: 370-373. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mason TG, Weitz DA. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 1995; 74: 1250-1253. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Turlier H, Fedosov DA, Audoly B, et al. Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat Phys 2016; 12: 513-519. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Green RA, Paluch E, Oegema K. Cytokinesis in animal cells. Annu Rev Cell Dev Biol 2012; 28: 29-58. [Article] [CrossRef] [PubMed] [Google Scholar]
- Eggert US, Mitchison TJ, Field CM. Animal cytokinesis: From parts list to mechanisms. Annu Rev Biochem 2006; 75: 543-566. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bringmann H, Hyman AA. A cytokinesis furrow is positioned by two consecutive signals. Nature 2005; 436: 731-734. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sain A, Inamdar MM, Jülicher F. Dynamic force balances and cell shape changes during cytokinesis. Phys Rev Lett 2015; 114: 048102. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Turlier H, Audoly B, Prost J, et al. Furrow constriction in animal cell cytokinesis. Biophys J 2014; 106: 114-123. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shao D, Rappel WJ, Levine H. Computational model for cell morphodynamics. Phys Rev Lett 2010; 105: 108104. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shao D, Levine H, Rappel WJ. Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci USA 2012; 109: 6851-6856. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tjhung E, Tiribocchi A, Marenduzzo D, et al. A minimal physical model captures the shapes of crawling cells. Nat Commun 2015; 6: 5420. [Article]arxiv:1502.07115 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bergert M, Erzberger A, Desai RA, et al. Force transmission during adhesion-independent migration. Nat Cell Biol 2015; 17: 524-529. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fujiwara T, Ritchie K, Murakoshi H, et al. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 2002; 157: 1071-1082. [Article] [CrossRef] [PubMed] [Google Scholar]
- Plowman SJ, Muncke C, Parton RG, et al. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci USA 2005; 102: 15500-15505. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Arnold DP, Gubbala A, Takatori SC. Active surface flows accelerate the coarsening of lipid membrane domains. Phys Rev Lett 2023; 131: 128402. [Article]arxiv:2306.00218 [CrossRef] [PubMed] [Google Scholar]
- Gowrishankar K, Ghosh S, Saha S, et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 2012; 149: 1353-1367. [Article] [CrossRef] [PubMed] [Google Scholar]
- Goswami D, Gowrishankar K, Bilgrami S, et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 2008; 135: 1085-1097. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pizarro-Cerdá J, Charbit A, Enninga J, et al. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Semin Cell Dev Biol 2016; 60: 155-167. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gonzalez-Rodriguez D, Maddugoda MP, Stefani C, et al. Cellular dewetting: Opening of macroapertures in endothelial cells. Phys Rev Lett 2012; 108: 218105. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Din MO, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 2016; 536: 81-85. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jiang J, Huang Y, Zeng Z, et al. Harnessing engineered immune cells and bacteria as drug carriers for cancer immunotherapy. ACS Nano 2023; 17: 843-884. [Article] [CrossRef] [Google Scholar]
- Takatori SC, Sahu A. Active contact forces drive nonequilibrium fluctuations in membrane vesicles. Phys Rev Lett 2020; 124: 158102. [Article]arxiv:1911.01337 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Manneville JB, Bassereau P, Lévy D, et al. Activity of transmembrane proteins induces magnification of shape fluctuations of lipid membranes. Phys Rev Lett 1999; 82: 4356-4359. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 1990; 64: 2094-2097. [Article] [CrossRef] [PubMed] [Google Scholar]
- Faris MDEA, Lacoste D, Pécréaux J, et al. Membrane tension lowering induced by protein activity. Phys Rev Lett 2009; 102: 038102. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.