Open Access
Issue
Natl Sci Open
Volume 3, Number 5, 2024
Article Number 20230054
Number of page(s) 18
Section Information Sciences
DOI https://doi.org/10.1360/nso/20230054
Published online 22 March 2024
  • Mendel JM, McLaren RW. Reinforcement-learning control and pattern recognition systems. In: Mendel JM, Fu KS (eds). Adaptive, Learning and Pattern Recognition Systems: Theory and Applications. New York: Academic Press, 1970, 287-318. [Google Scholar]
  • Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science 2015; 349: 255-260. [Article] [Google Scholar]
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444. [Article] [Google Scholar]
  • Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 2018. [Google Scholar]
  • Botvinick M, Ritter S, Wang JX, et al. Reinforcement learning, fast and slow. Trends Cogn Sci 2019; 23: 408-422. [Article] [Google Scholar]
  • Silver D, Huang A, Maddison CJ, et al. Mastering the game of go with deep neural networks and tree search. Nature 2016; 529: 484-489. [Article] [Google Scholar]
  • Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge. Nature 2017; 550: 354-359. [Article] [Google Scholar]
  • Schmidt M, Lipson H. Distilling free-form natural laws from experimental data. Science 2009; 324: 81-85. [Article] [Google Scholar]
  • Batchelor CK. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 2000. [CrossRef] [Google Scholar]
  • Ljung L. System Identification: Theory for the User. Prentice-Hall: Upper Saddle River, 1999. [Google Scholar]
  • Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proc Natl Acad Sci USA 2007; 104: 9943-9948. [Article] [Google Scholar]
  • Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA 2016; 113: 3932-3937. [Article] [Google Scholar]
  • Sugihara G, May R, Ye H, et al. Detecting causality in complex ecosystems. Science 2012; 338: 496-500. [Article] [Google Scholar]
  • Ye H, Beamish RJ, Glaser SM, et al. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc Natl Acad Sci USA 2015; 112: E1569-E1576. [Article] [Google Scholar]
  • Daniels BC, Nemenman I. Automated adaptive inference of phenomenological dynamical models. Nat Commun 2015; 6: 8133. [Article] [Google Scholar]
  • Baird LC. Reinforcement learning in continuous time: Advantage updating. In: Proceedings of the 1994 IEEE International Conference on Neural Networks (ICNN’94). Orlando: IEEE, 1994, 2448-2453. [Google Scholar]
  • Doya K. Reinforcement learning in continuous time and space. Neural Comput 2000; 12: 219-245. [Article] [Google Scholar]
  • Hanselmann T, Noakes L, Zaknich A. Continuous-time adaptive critics. IEEE Trans Neural Netw 2007; 18: 631-647. [Article] [Google Scholar]
  • Murray J, Cox C, Saeks R, et al. Globally convergent approximate dynamic programming applied to an autolander. In: Proceedings of the 2001 American Control Conference. Arlington: IEEE, 2001, 2901-2906. [Google Scholar]
  • Mehta P, Meyn S. Q-learning and pontryagin’s minimum principle. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. Shanghai: IEEE, 2009, 3598-3605. [Google Scholar]
  • Vrabie D, Pastravanu O, Abu-Khalaf M, et al. Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica 2009; 45: 477-484. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Lewis FL, Vrabie D, Vamvoudakis KG. Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers. IEEE Contr Syst Mag 2012; 32: 76-105. [Google Scholar]
  • Lewis FL, Vrabie D, Syrmos VL. Optimal Control. Hoboken: John Wiley & Sons, 2012. [Google Scholar]
  • Jiang Y, Jiang ZP. Robust Adaptive Dynamic Programming. Hoboken: John Wiley & Sons, 2017. [Google Scholar]
  • Kamalapurkar R, Walters P, Rosenfeld J, et al. Reinforcement Learning for Optimal Feedback Control: A Lyapunov-Based Approach. Cham: Springer, 2018. [Google Scholar]
  • Chen C, Modares H, Xie K, et al. Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics. IEEE Trans Automat Contr 2019; 64: 4423-4438. [Article] [Google Scholar]
  • Chen C, Lewis FL, Xie K, et al. Off-policy learning for adaptive optimal output synchronization of heterogeneous multi-agent systems. Automatica 2020; 119: 109081. [Article] [CrossRef] [Google Scholar]
  • Chen C, Xie L, Xie K, et al. Adaptive optimal output tracking of continuous-time systems via output-feedback-based reinforcement learning. Automatica 2022; 146: 110581. [Article] [Google Scholar]
  • Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci 2002; 5: 1226-1235. [Article] [Google Scholar]
  • Shadmehr R, Mussa-Ivaldi S. Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions. Cambridge: MIT Press, 2012. [CrossRef] [Google Scholar]
  • Liu YY, Slotine JJ, Barabási AL. Controllability of complex networks. Nature 2011; 473: 167-173. [Article] [Google Scholar]
  • Ruths J, Ruths D. Control profiles of complex networks. Science 2014; 343: 1373-1376. [Article] [Google Scholar]
  • Li A, Cornelius SP, Liu YY, et al. The fundamental advantages of temporal networks. Science 2017; 358: 1042-1046. [Article] [Google Scholar]
  • Zañudo JGT, Yang G, Albert R. Structure-based control of complex networks with nonlinear dynamics. Proc Natl Acad Sci USA 2017; 114: 7234-7239. [Article] [Google Scholar]
  • Yan G, Tsekenis G, Barzel B, et al. Spectrum of controlling and observing complex networks. Nat Phys 2015; 11: 779-786. [Article] [Google Scholar]
  • Duan C, Nishikawa T, Motter AE. Prevalence and scalable control of localized networks. Proc Natl Acad Sci USA 2022; 119: e2122566119. [Article] [Google Scholar]
  • Tao G. Adaptive control design and analysis. Hoboken: John Wiley & Sons, 2003. [CrossRef] [Google Scholar]
  • Åström KJ, Wittenmark B. Adaptive Control. North Chelmsford, MA: Courier Corporation, 2013. [Google Scholar]
  • Ioannou PA, Sun J. Robust Adaptive Control. New York: Courier Corporation, 2012. [Google Scholar]
  • Stevens BL, Lewis FL, Johnson EN. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. Hoboken: John Wiley & Sons, 2015. [CrossRef] [Google Scholar]
  • Wang Y, Zhou R, Wen C. Robust load-frequency controller design for power systems. In: Proceedings of the First IEEE Conference on Control Applications. Dayton: IEEE, 1993. [Google Scholar]
  • Chen C, Lewis FL, Li B. Homotopic policy iteration-based learning design for unknown linear continuous-time systems. Automatica 2022; 138: 110153. [Article] [CrossRef] [Google Scholar]
  • Franklin DW, Burdet E, Peng Tee K, et al. CNS learns stable, accurate, and efficient movements using a simple algorithm. J Neurosci 2008; 28: 11165-11173. [Article] [Google Scholar]
  • Marvasti F. Nonuniform Sampling: Theory and Practice. New York: Springer, 2012. [Google Scholar]
  • Machowski J, Lubosny Z, Bialek JW, et al. Power System Dynamics: Stability and Control. Hoboken: John Wiley & Sons, 2020. [Google Scholar]
  • Kundur PS, Malik OP. Power System Stability and Control. New York: McGraw-Hill Education, 2022. [Google Scholar]
  • Zimmerman RD, Murillo-Sanchez CE, Thomas RJ. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 2010; 26: 12-19. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.