Open Access
Issue |
Natl Sci Open
Volume 3, Number 6, 2024
|
|
---|---|---|
Article Number | 20240011 | |
Number of page(s) | 13 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20240011 | |
Published online | 28 June 2024 |
- Kivshar YS, Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. San Diego: Academic Press, 2003 [Google Scholar]
- Kartashov YV, Malomed BA, Torner L. Solitons in nonlinear lattices. Rev Mod Phys 2011; 83: 247-305. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kartashov YV, Astrakharchik GE, Malomed BA, et al. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat Rev Phys 2019; 1: 185-197. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Blanco-Redondo A, de Sterke CM, Xu C, et al. The bright prospects of optical solitons after 50 years. Nat Photon 2023; 17: 937-942. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kartashov YV, Zezyulin DA. Stable multiring and rotating solitons in two-dimensional spin-orbit-coupled Bose-Einstein condensates with a radially periodic potential. Phys Rev Lett 2019; 122: 123201. [Article] [CrossRef] [PubMed] [Google Scholar]
- Goblot V, Rauer B, Vicentini F, et al. Nonlinear polariton fluids in a flatband reveal discrete gap solitons. Phys Rev Lett 2019; 123: 113901. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zeng L, Zeng J. Gap-type dark localized modes in a Bose-Einstein condensate with optical lattices. Adv Photon 2019; 1: 046004. [CrossRef] [Google Scholar]
- Li J, Zeng J. Dark matter-wave gap solitons in dense ultracold atoms trapped by a one-dimensional optical lattice. Phys Rev A 2021; 103: 013320. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Malomed BA, Zeng J. Localized modes in nonlinear fractional systems with deep lattices. Advcd Theor Sims 2022; 5: 2100482. [Article] [Google Scholar]
- Chen Z, Zeng J. Nonlinear localized modes in one-dimensional nanoscale dark-state optical lattices. Nanophotonics 2022; 11: 3465-3474. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li J, Zhang Y, Zeng J. Matter-wave gap solitons and vortices in three-dimensional parity-time-symmetric optical lattices. Science 2022; 25: 104026. [Article] [Google Scholar]
- Li J, Zhang Y, Zeng J. 3D nonlinear localized gap modes in Bose-Einstein condensates trapped by optical lattices and space-periodic nonlinear potentials. Adv Photon Res 2022; 3: 2100288. [Article] [CrossRef] [Google Scholar]
- Pernet N, St-Jean P, Solnyshkov DD, et al. Gap solitons in a one-dimensional driven-dissipative topological lattice. Nat Phys 2022; 18: 678-684. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pan Y, Cohen MI, Segev M. Superluminal k-Gap solitons in nonlinear photonic time crystals. Phys Rev Lett 2023; 130: 233801. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huang C, Ye F, Chen X, et al. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci Rep 2016; 6: 32546. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang P, Zheng Y, Chen X, et al. Localization and delocalization of light in photonic moiré lattices. Nature 2020; 577: 42-46. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fu Q, Wang P, Huang C, et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat Photon 2020; 14: 663-668. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wang P, Fu Q, Peng R, et al. Two-dimensional Thouless pumping of light in photonic moiré lattices. Nat Commun 2022; 13: 6738. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Liu X, Zeng J. Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front Phys 2022; 17: 42508. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tang H, Du F, Carr S, et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci Appl 2021; 10: 157. [Article] [Google Scholar]
- Mao XR, Shao ZK, Luan HY, et al. Magic-angle lasers in nanostructured moiré superlattice. Nat Nanotechnol 2021; 16: 1099-1105 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Luan HY, Ouyang YH, Zhao ZW, et al. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 2023; 624: 282-288. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Meng Z, Wang L, Han W, et al. Atomic Bose-Einstein condensate in twisted-bilayer optical lattices. Nature 2023; 615: 231-236. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Du L, Molas MR, Huang Z, et al. Moiré photonics and optoelectronics. Science 2023; 379: 6639 [Google Scholar]
- Qian Q, Wan Z, Duan X. Van der Waals integration of artificial heterostructures and high-order superlattices. Natl Sci Open 20232: 20220034 [CrossRef] [Google Scholar]
- Huang C, Dong L, Deng H, et al. Fundamental and vortex gap solitons in quasiperiodic photonic lattices. Opt Lett 2021; 46: 5691-5694. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kartashov YV, Ye F, Konotop VV, et al. Multifrequency solitons in commensurate-incommensurate photonic Moiré lattices. Phys Rev Lett 2021; 127: 163902. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kartashov YV. Light bullets in moiré lattices. Opt Lett 2022, 47: 4528-4531 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ivanov SK, Konotop VV, Kartashov YV, et al. Vortex solitons in moiré optical lattices. Opt Lett 2023; 48: 3797-3800. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Arkhipova AA, Kartashov YV, Ivanov SK, et al. Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys Rev Lett 2023; 130: 083801. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Zeng J. Gap solitons in parity-time symmetric moiré optical lattices. Photon Res 2023; 11: 196-202. [Article] [CrossRef] [Google Scholar]
- Liu X, Zeng J. Matter-wave gap solitons and vortices of dense Bose-Einstein condensates in Moiré optical lattices. Chaos Solitons & Fractals 2023; 174: 113869 [Google Scholar]
- Liu X, Zeng J. Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices. Front Phys 2024; 19: 42201. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu X, Zeng J. Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices. Adv Photon Nexus 2024; 19: 42201 [Google Scholar]
- Ultanir EA, Stegeman GI, Michaelis D, et al. Stable dissipative solitons in semiconductor optical amplifiers. Phys Rev Lett 2003; 90: 253903. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sakaguchi H, Malomed BA. Gap solitons in Ginzburg-Landau media. Phys Rev E 2008; 77: 056606. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Sakaguchi H, Malomed BA. Two-dimensional dissipative gap solitons. Phys Rev E 2009; 80: 026606. [Article] [Google Scholar]
- Ye F, Huang C, Kartashov YV, et al. Solitons supported by localized parametric gain. Opt Lett 2013; 38: 480-482 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Huang C, Ye F, Malomed BA, et al. Solitary vortices supported by localized parametric gain. Opt Lett 2013; 38: 2177-2180. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers. Nat Photon 2012; 6: 84-92. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kippenberg TJ, Gaeta AL, Lipson M, et al. Dissipative Kerr solitons in optical microresonators. Science 2018; 361: eaan8083. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bao C, Chang W, Yang C, et al. Observation of coexisting dissipative solitons in a mode-locked fiber laser. Phys Rev Lett 2015; 115: 253903. [Article] [CrossRef] [PubMed] [Google Scholar]
- Peng J, Boscolo S, Zhao Z, et al. Breathing dissipative solitons in mode-locked fiber lasers. Sci Adv 2019; 5: eaax1110. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cao B, Gao C, Liu K, et al. Spatiotemporal mode-locking and dissipative solitons in multimode fiber lasers. Light Sci Appl 2023; 12: 260. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Peng B, Kim S, et al. Optomechanical dissipative solitons. Nature 2021; 600: 75-80. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Karpov M, Guo H, Kordts A, et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys Rev Lett 2016; 116: 103902. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang M, Ding S, Li X, et al. Strong interactions between solitons and background light in Brillouin-Kerr microcombs. Nat Commun 2024; 15: 1661. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Malomed BA. Multidimensional dissipative solitons and solitary vortices. Chaos Solitons & Fractals 2022; 163: 112526 [Google Scholar]
- Vakhitov NG, Kolokolov AA. Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys Quantum Electron 1973; 16: 783-789. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang K, Seidel M, Nagarajan K, et al. Large optical nonlinearity enhancement under electronic strong coupling. Nat Commun 2021; 12: 1486. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang J. Nonlinear Waves in Integrable and Nonintegrable Systems. Philadelphia: SIAM, 2010 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.