Issue
Natl Sci Open
Volume 4, Number 1, 2025
Special Topic: Nuclear Environment Advances
Article Number 20240003
Number of page(s) 15
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20240003
Published online 13 September 2024
  • Yan C, Li J, Tan C, et al. Cuprous oxide-based cationic hydrogel by the integration of enrichment and immobilization of radioiodine (I , IO3 ) in aqueous solution. ACS Appl Mater Interfaces 2023; 15: 28135-28148. [Article] [Google Scholar]
  • Chen P, He X, Pang M, et al. Iodine capture using Zr-based metal–organic frameworks (Zr-MOFs): Adsorption performance and mechanism. ACS Appl Mater Interfaces 2020; 12: 20429-20439. [Article] [Google Scholar]
  • Kang J, Levitskaia TG, Park S, et al. Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions. Chem Eng J 2020; 380: 122408. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Asmussen RM, Westesen A, Cordova EA, et al. Iodine removal from carbonate-containing alkaline liquids using strong base resins, hybrid resins, and silver precipitation. Ind Eng Chem Res 2023; 62: 3271-3281. [Article] [Google Scholar]
  • Mclaughlin PD, Jones B, Maher MM. An update on radioactive release and exposures after the Fukushima Dai-ichi nuclear disaster. BJR 2012; 85: 1222-1225. [Article] [Google Scholar]
  • Beals DM, Hayes DW. Technetium-99, iodine-129 and tritium in the waters of the Savannah River Site. Sci Total Environ 1995; 173-174: 101-115. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Rose PS, Smith JP, Cochran JK, et al. Behavior of medically-derived 131I in the tidal Potomac River. Sci Total Environ 2013; 452-453: 87-97. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Jiménez F, López R, Pardo R, et al. The determination and monitoring of 131I activity in sewage treatment plants based on A2/O processes. Radiat Meas 2011; 46: 104-108 [CrossRef] [MathSciNet] [Google Scholar]
  • Barquero R, Agulla MM, Ruiz A. Liquid discharges from the use of radionuclides in medicine (diagnosis). J Environ Radioact 2008; 99: 1535-1538. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Fischer HW, Ulbrich S, Pittauerová D, et al. Medical radioisotopes in the environment—Following the pathway from patient to river sediment. J Environ Radioact 2009; 100: 1079-1085. [Article] [Google Scholar]
  • Moore RC, Pearce CI, Morad JW, et al. Iodine immobilization by materials through sorption and redox-driven processes: A literature review. Sci Total Environ 2020; 716: 132820. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Choung S, Kim M, Yang JS, et al. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite. Environ Sci Technol 2014; 48: 9684-9691. [Article] [Google Scholar]
  • Kaplan DI, Serne RJ, Parker KE, et al. Iodide sorption to subsurface sediments and illitic minerals. Environ Sci Technol 2000; 34: 399-405. [Article] [Google Scholar]
  • Inglezakis VJ, Satayeva A, Yagofarova A, et al. Surface interactions and mechanisms study on the removal of iodide from water by use of natural zeolite-based silver nanocomposites. Nanomaterials 2020; 10: 1156. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Pham TCT, Docao S, Hwang IC, et al. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energy Environ Sci 2016; 9: 1050-1062. [Article] [Google Scholar]
  • Ikari M, Matsui Y, Suzuki Y, et al. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon. Water Res 2015; 68: 227-237. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li D, Kaplan DI, Sams A, et al. Removal capacity and chemical speciation of groundwater iodide (I) and iodate (IO3) sequestered by organoclays and granular activated carbon. J Environ Radioact 2018; 192: 505-512. [Article] [Google Scholar]
  • Li D, Kaplan DI, Price KA, et al. Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems. J Environ Radioact 2019; 208-209: 106017. [Article] [Google Scholar]
  • Hoskins JS, Karanfil T, Serkiz SM. Removal and sequestration of iodide using silver-impregnated activated carbon. Environ Sci Technol 2002; 36: 784-789. [Article] [Google Scholar]
  • Lin Y, Jiang X, Kim ST, et al. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 2017; 139: 7172-7175. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu X, Zhang A, Ma R, et al. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chin Chem Lett 2022; 33: 3549-3555. [Article] [CrossRef] [Google Scholar]
  • He L, Chen L, Dong X, et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 2021; 7: 699-714. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang Y, He L, Pan T, et al. Superior iodine uptake capacity enabled by an open metal-sulfide framework composed of three types of active sites. CCS Chem 2023; 5: 1540-1548. [Article] [CrossRef] [Google Scholar]
  • Liu S, Kang S, Wang H, et al. Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chem Eng J 2016; 289: 219-230. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhao Q, Chen G, Wang Z, et al. Efficient removal and immobilization of radioactive iodide and iodate from aqueous solutions by bismuth-based composite beads. Chem Eng J 2021; 426: 131629. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang N, Zhang G, Xiong R, et al. Synchronous moderate oxidation and adsorption on the surface of γ-MnO2 for efficient iodide removal from water. Environ Sci Technol 2022; 56: 9417-9427. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhao Y, Li J, Chen L, et al. Efficient removal of iodide/iodate from aqueous solutions by Purolite A530E resin. J Radioanal Nucl Chem 2023; 332: 1193-1202. [Article] [Google Scholar]
  • Zhang D, Liu XY, Zhao HT, et al. Application of hydrotalcite in soil immobilization of iodate (IO3 ). RSC Adv 2018; 8: 21084-21091. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Kang J, Cintron-Colon F, Kim H, et al. Removal of iodine (I and IO3) from aqueous solutions using CoAl and NiAl layered double hydroxides. Chem Eng J 2022; 430: 132788. [Article] [CrossRef] [Google Scholar]
  • Ho TL. Hard soft acids bases (HSAB) principle and organic-chemistry. Chem Rev 1975; 75: 1-20 [CrossRef] [Google Scholar]
  • Lide DR. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2004 [Google Scholar]
  • Lammert M, Glißmann C, Reinsch H, et al. Synthesis and characterization of new Ce(IV)-MOFs exhibiting various framework topologies. Cryst Growth Des 2017; 17: 1125-1131. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Pervez MN, Chen C, Li Z, et al. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands. Chemosphere 2022; 303: 134934. [Article] [Google Scholar]
  • Chu L, Guo J, Huang Z, et al. Excellent catalytic performance over acid-treated MOF-808(Ce) for oxidative desulfurization of dibenzothiophene. Fuel 2023; 332: 126012. [Article] [Google Scholar]
  • He J, Pei C, Yang Y, et al. The structural design and valence state control of cerium-based metal-organic frameworks for their highly efficient phosphate removal. J Cleaner Production 2021; 321: 128778. [Article] [Google Scholar]
  • Jacobsen J, Ienco A, D′Amato R, et al. The chemistry of Ce-based metal–organic frameworks. Dalton Trans 2020; 49: 16551-16586. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang K, Chen T. Sorption and removal of iodate from aqueous solution using dried duckweed (Landoltia punctata) powder. J Radioanal Nucl Chem 2018; 316: 543-551. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu P, Chen T, Zheng J. Removal of iodate from aqueous solution using diatomite/nano titanium dioxide composite as adsorbent. J Radioanal Nucl Chem 2020; 324: 1179-1188. [Article] [Google Scholar]
  • Da T, Chen T. Optimization of experimental factors on iodate adsorption: A case study of pomelo peel. J Radioanal Nucl Chem 2020; 326: 511-523. [Article] [Google Scholar]
  • Suorsa V, Otaki M, Virkanen J, et al. Pure and Sb-doped ZrO2 for removal of IO3 from radioactive waste solutions. Int J Environ Sci Technol 2022; 19: 5155-5166. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yang J, Tai W, Wu F, et al. Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: Experimental and theoretical study. Chemosphere 2022; 292: 133401. [Article] [Google Scholar]
  • Zhang Y, Cremer PS. Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 2010; 61: 63-83. [Article] [Google Scholar]
  • Li J, Ma X, Zhao C, et al. A novel Ce(IO3)4 catalyst: Facile preparation and high activity in degradation of organic dyes without light irradiation at room temperature. J Phys Chem Solids 2017; 100: 33-39. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Schmitz G. Kinetics and mechanism of the iodate-iodide reaction and other related reactions. Phys Chem Chem Phys 1999; 1: 1909-1914 [Google Scholar]
  • Li J, Dai X, Zhu L, et al. 99TcO4 remediation by a cationic polymeric network. Nat Commun 2018; 9: 3007. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1917; 40: 1361-1403 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.