Issue
Natl Sci Open
Volume 4, Number 2, 2025
Special Topic: Flexible Electronics and Micro/Nanomanufacturing
Article Number 20240025
Number of page(s) 13
Section Engineering
DOI https://doi.org/10.1360/nso/20240025
Published online 15 August 2024
  • Mumtaz W, Xia L, Ali SSA, et al. Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). BioMed Signal Process Control 2017; 31: 108-115. [Article] [Google Scholar]
  • Zheng WL, Zhu JY, Lu BL. Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans Affect Comput 2019; 10: 417-429. [Article] [Google Scholar]
  • Spüler M, Zhang D. A high-speed brain-computer interface (BCI) using dry EEG electrodes. PLoS ONE 2017; 12: e0172400. [Article] [Google Scholar]
  • Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019; 48: 1642-1667. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li GL, Wu JT, Xia YH, et al. Review of semi-dry electrodes for EEG recording. J Neural Eng 2020; 17: 051004. [Article] [Google Scholar]
  • Lin S, Liu J, Li W, et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett 2019; 19: 6853-6861. [Article] [Google Scholar]
  • Wang J, Zhou Q, Wang A, et al. Sponge inspired flexible, antibacterial aerogel electrode with long-term high-quality electrophysiological signal recording for human-machine interface. Adv Funct Mater 2024; 34: 2309704. [Article] [Google Scholar]
  • Xing X, Wang Y, Pei W, et al. A high-speed SSVEP-based BCI using dry EEG electrodes. Sci Rep 2018; 8: 14708. [Article] [Google Scholar]
  • Huang YJ, Wu CY, Wong AMK, et al. Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans Biomed Eng 2015; 62: 256-263. [Article] [Google Scholar]
  • Salvo P, Raedt R, Carrette E, et al. A 3D printed dry electrode for ECG/EEG recording. Sens Actuat A-Phys 2012; 174: 96-102. [Article] [Google Scholar]
  • Lin CT, Liao LD, Liu YH, et al. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans Biomed Eng 2011; 58: 1200-1207. [Article] [Google Scholar]
  • Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 2020; 11: 4683. [Article] [Google Scholar]
  • Luo J, Sun C, Chang B, et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano 2022; 16: 19373-19384. [Article] [Google Scholar]
  • Wang C, Wang H, Wang B, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv 2022; 8: eabo1396. [Article] [Google Scholar]
  • Ren Z, Hu W, Liu C, et al. Phase-changing bistable electroactive polymer exhibiting sharp rigid-to-rubbery transition. Macromolecules 2016; 49: 134-140. [Article] [Google Scholar]
  • Guo W, Zheng P, Huang X, et al. Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl Mater Interfaces 2019; 11: 8567-8575. [Article] [Google Scholar]
  • Zhao J, Feng J, Jiang Y, et al. Skin-integrated electrodes based on room-temperature curable, highly conductive silver/polydimethylsiloxane composites. Small 2024; 20: 2309470. [Article] [CrossRef] [Google Scholar]
  • Sun S, Li M, Liu A. A review on mechanical properties of pressure sensitive adhesives. Int J Adh Adhes 2013; 41: 98-106. [Article] [Google Scholar]
  • Chang EP. Viscoelastic properties of pressure-sensitive adhesives. J Adh 1997; 60: 233-248. [Article] [Google Scholar]
  • Wu H, Yang G, Zhu K, et al. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces. Adv Sci 2021; 8: 2001938. [Article] [CrossRef] [Google Scholar]
  • Arumugam V, Naresh MD, Sanjeevi R. Effect of strain rate on the fracture behaviour of skin. J Biosci 1994; 19: 307-313. [Article] [Google Scholar]
  • Jiang Y, Wang Z, Kim I, et al. Flexible finger-shaped active dry EEG electrode with a configurable application-specific integrated circuit and embedded leadoff detection. IEEE Sens J 2023; 23: 17439-17450. [Article] [Google Scholar]
  • Biasiucci A, Franceschiello B, Murray MM. Electroencephalography. Curr Biol 2019; 29: R80-R85. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Gao KP, Yang HJ, Wang XL, et al. Soft pin-shaped dry electrode with bristles for EEG signal measurements. Sens Actuat A-Phys 2018; 283: 348-361. [Article] [Google Scholar]
  • Friman O, Volosyak I, Graser A. Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans Biomed Eng 2007; 54: 742-750. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu J, Liu X, He E, et al. A novel dry-contact electrode for measuring electroencephalography signals. Sens Actuat A-Phys 2019; 294: 73-80. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.