Open Access
Issue
Natl Sci Open
Volume 4, Number 3, 2025
Article Number 20240045
Number of page(s) 20
Section Engineering
DOI https://doi.org/10.1360/nso/20240045
Published online 13 January 2025
  • Shin HC, Kim SM. Experimental investigation of two-phase flow regimes in rectangular micro-channel with two mixer types. Chem Eng J 2022; 448: 137581. [Article] [Google Scholar]
  • Chen J, Zheng X, Zhang J, et al. Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. Natl Sci Rev 2022; 9: nwab186. [Article] [CrossRef] [Google Scholar]
  • Damiani L, Revetria R. New steam generation system for lead-cooled fast reactors, based on steam re-circulation through ejector. Appl Energy 2015; 137: 292-300. [Article] [Google Scholar]
  • Cheng Y, Wang Z. New approach for efficient condensation heat transfer. Natl Sci Rev 2019; 6: 185-186. [Article] [Google Scholar]
  • Yan X, Xu W, Deng Y, et al. Bubble energy generator. Sci Adv 2022; 8: eabo7698. [Article] [CrossRef] [Google Scholar]
  • Rabinowitz J, Whittier E, Liu Z, et al. Nanobubble-controlled nanofluidic transport. Sci Adv 2020; 6: eabd0126. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Shin D, Park JB, Kim YJ, et al. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat Commun 2015; 6: 6068. [Article] [Google Scholar]
  • Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 2002; 57: 1849-1858. [Article] [Google Scholar]
  • Taghavi M, Motil BJ, Nahra H, et al. The international space station packed bed reactor experiment: capillary effects in gas-liquid two-phase flows. npj Microgravity 2023; 9: 55. [Article] [Google Scholar]
  • Lee JS, Weon BM, Park SJ, et al. Size limits the formation of liquid jets during bubble bursting. Nat Commun 2011; 2: 367. [Article] [Google Scholar]
  • Wang G, Zhang M, Dang Z, et al. Axial interfacial area transport and flow structure development in vertical upward bubbly and slug flow. Int J Heat Mass Transfer 2021; 169: 120919. [Article] [Google Scholar]
  • Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J 1979; 25: 843-855. [Article] [Google Scholar]
  • Zhang H, Xiao Y, Gu H. Experimental investigation of two-phase flow evolution in a tight lattice bundle using wire-mesh sensor. Int J Heat Mass Transfer 2021; 171: 121079. [Article] [Google Scholar]
  • Fu XY, Ishii M. Two-group interfacial area transport in vertical air-water flow: I. Mechanistic model. Nucl Eng Des 2003; 219: 143-168. [Article] [Google Scholar]
  • Ji B, Yang Z, Feng J. Compound jetting from bubble bursting at an air-oil-water interface. Nat Commun 2021; 12: 6305. [Article] [Google Scholar]
  • Kim S, Ishii M, Kong R, et al. Progress in two-phase flow modeling: Interfacial area transport. Nucl Eng Des 2021; 373: 111019. [Article] [Google Scholar]
  • Worosz TS. Interfacial area transport equation for bubbly to cap-bubbly transition flows. Dissertation for Doctoral Degree. State College: The Pennsylvania State University, 2015 [Google Scholar]
  • Fu X. Interfacial area measurement and transport modeling in air-water two-phase flow. Dissertation for Doctoral Degree. State College: Purdue University, 2001 [Google Scholar]
  • Sun X. Two-group interfacial area transport equation for a confined test section. Dissertation for Doctoral Degree. State College: Purdue University, 2001 [Google Scholar]
  • Yang X, Schlegel JP, Liu Y, et al. Prediction of interfacial area transport in a scaled 8×8 BWR rod bundle. Nucl Eng Des 2016; 310: 638-647. [Article] [Google Scholar]
  • Wang G, Zhu Q, Dang Z, et al. Prediction of interfacial area concentration in a small diameter round pipe. Int J Heat Mass Transfer 2019; 130: 252-265. [Article] [Google Scholar]
  • Wang G, Ishii M. Comprehensive evaluation of two-group interfacial area transport equation and new intergroup transfer model. Int J Heat Mass Transfer 2021; 174: 121281. [Article] [Google Scholar]
  • Shen X, Hibiki T. Two-phase interfacial structure development in vertical narrow rectangular channels. Int J Heat Mass Transfer 2022; 191: 122832. [Article] [Google Scholar]
  • Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. New York: Springer, 2011 [CrossRef] [MathSciNet] [Google Scholar]
  • Prasser HM, Häfeli R. Signal response of wire-mesh sensors to an idealized bubbly flow. Nucl Eng Des 2018; 336: 3-14. [Article] [Google Scholar]
  • Zhang H, Xiao Y, Gu H. Interfacial area concentration and bubble size distribution measurement using tomography technique. Int J Multiphase Flow 2021; 142: 103741. [Article] [Google Scholar]
  • Zhang H, Xiao Y, Yan X, et al. Experimental investigation on interfacial parameters of two-phase flow in a tight lattice rod bundle with optimized data processing method. Int Commun Heat Mass Transfer 2023; 140: 106530. [Article] [Google Scholar]
  • Yan X, Xiao Y, Zhang H, et al. Periodic large-scale structural characteristics of two-phase flow in tight lattice bundles. Int J Heat Mass Transfer 2023; 213: 124331. [Article] [Google Scholar]
  • Hengwei Z, Yao X, Hanyang G. Experimental study on bubble shape in a tight lattice bundle. Nuclear Power Engineering 2021; 42: 77–82 [Google Scholar]
  • Fu XY, Ishii M. Two-group interfacial area transport in vertical air-water flow: II. Model evaluation. Nucl Eng Des 2003; 219: 169-190. [Article] [Google Scholar]
  • Sun X, Kim S, Ishii M, et al. Model evaluation of two-group interfacial area transport equation for confined upward flow. Nucl Eng Des 2004; 230: 27-47. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.