| Issue |
Natl Sci Open
Volume 4, Number 6, 2025
Special Topic: Artificial Intelligence and Energy Revolution
|
|
|---|---|---|
| Article Number | 20250025 | |
| Number of page(s) | 18 | |
| Section | Chemistry | |
| DOI | https://doi.org/10.1360/nso/20250025 | |
| Published online | 19 September 2025 | |
- Khan HA, Tawalbeh M, Aljawrneh B, et al. A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges. Energy 2024; 295: 131043. [Article] [Google Scholar]
- Chang JK, Lee MT, Tsai WT, et al. X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy studies on reversible insertion/desertion of dicyanamide anions into/from manganese oxide in ionic liquid. Chem Mater 2009; 21: 2688-2695. [Article] [Google Scholar]
- Dou Q, Liu L, Yang B, et al. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nat Commun 2017; 8: 2188. [Article] [Google Scholar]
- Lundin F, Stettner T, Falus P, et al. Effect of water on local structure and dynamics in a protic ionic liquid-based electrolyte. ChemSusChem 2025; 18: e202402753. [Article] [Google Scholar]
- Matuszek K, Piper SL, Brzęczek-Szafran A, et al. Unexpected energy applications of ionic liquids. Adv Mater 2024; 36: 2313023. [Article] [Google Scholar]
- Yao N, Chen X, Fu ZH, et al. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem Rev 2022; 122: 10970-11021. [Article] [Google Scholar]
- Wang J, Ju J, Wang Y. CEMP: A platform unifying high-throughput online calculation, databases and predictive models for clean energy materials. 2025, arXiv: 2507.04423 [Google Scholar]
- Racki A, Paduszyński K. Recent advances in the modeling of ionic liquids using artificial neural networks. J Chem Inf Model 2025; 65: 3161-3175. [Article] [Google Scholar]
- Xiao P, Yun X, Chen Y, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem Soc Rev 2023; 52: 5255-5316. [Article] [Google Scholar]
- Manna SS, Manna S, Pathak B. Molecular dynamics-machine learning approaches for the accurate prediction of electrochemical windows of ionic liquid electrolytes for dual-ion batteries. J Mater Chem A 2023; 11: 21702-21712. [Article] [Google Scholar]
- Yang Y, Yao N, Gao Y, et al. Data-knowledge-dual-driven electrolyte design for fast-charging lithium ion batteries. Angew Chem Int Ed 2025; 64: e202505212. [Article] [Google Scholar]
- Gao YC, Yao N, Chen X, et al. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes. J Am Chem Soc 2023; 145: 23764-23770. [Article] [Google Scholar]
- Xue CF, Wang L, Yang LX, et al. Nitrogen self-doped biochar sustainably self-activated from cactus solidified with freeze-drying strategy for lightweight supercapacitor. ACS Sustain Chem Eng 2024; 12: 15961-15971. [Article] [Google Scholar]
- Qing L, Jiang J. Enabling high-capacitance supercapacitors by polyelectrolyte brushes. ACS Nano 2023; 17: 17122-17130. [Article] [Google Scholar]
- Qi J, Bao K, Wang W, et al. Emerging two-dimensional materials for proton-based energy storage. ACS Nano 2024; : acsnano.4c06737. [Article] [Google Scholar]
- Cui S, Miao W, Wang X, et al. Multifunctional zincophilic hydrogel electrolyte with abundant hydrogen bonds for zinc-ion capacitors and supercapacitors. ACS Nano 2024; 18: 12355-12366. [Article] [Google Scholar]
- Kang YJ, Yoo Y, Kim W. 3-V solid-state flexible supercapacitors with ionic-liquid-based polymer gel electrolyte for AC line filtering. ACS Appl Mater Interfaces 2016; 8: 13909-13917. [Article] [Google Scholar]
- Gao R, Song Y, Ye Q, et al. Double-cross-linked and stretchable ionogels with tunable mechanics and ionic conductivity for thermal and mechanical sensors. ACS Appl Mater Interfaces 2025; 17: 20296-20306. [Article] [Google Scholar]
- Halder J, De P, Chandra A. Synergistic contribution of redox additive electrolytes to significantly increase the performances of hybrid supercapacitors. J Energy Storage 2024; 104: 114583. [Article] [Google Scholar]
- Benjamin M, Manoj D, Karnan M, et al. Switching the solubility of electroactive ionic liquids for designing high energy supercapacitor and low potential biosensor. J Colloid Interface Sci 2021; 588: 221-231. [Article] [Google Scholar]
- Wang J, Buzolic JJ, Mullen JW, et al. Nanostructure of locally concentrated ionic liquids in the bulk and at graphite and gold electrodes. ACS Nano 2023; 17: 21567-21584. [Article] [Google Scholar]
- Park JH, Rana HH, Kim JS, et al. Inorganic-organic double network ionogels based on silica nanoparticles for high-temperature flexible supercapacitors. ACS Appl Mater Interfaces 2023; 15: 37344-37353. [Article] [Google Scholar]
- Yang Y, Liu M, Zhang D, et al. “Water in ionic liquid” electrolyte toward supercapacitors with high operation voltage, long lifespan, and wide temperature compatibility. Battery Energy 2025; 4: e20240089. [Article] [Google Scholar]
- Zhao Z, Huang Y, Zheng H, et al. Cotton fiber/PVA-based neutral hydrogel with Al3+ as an electrolyte additive for high-performance supercapacitors. ACS Appl Energy Mater 2023; 6: 644-656. [Article] [Google Scholar]
- Feng G, Jiang X, Qiao R, et al. Water in ionic liquids at electrified interfaces: The anatomy of electrosorption. ACS Nano 2014; 8: 11685-11694. [Article] [Google Scholar]
- Xie J, Lin D, Lei H, et al. Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv Mater 2024; 36: 2306508. [Article] [Google Scholar]
- Khan Z, Martinelli A, Franco LR, et al. Mass transport in “water-in-polymer salt” electrolytes. Chem Mater 2023; 35: 6382-6395. [Article] [Google Scholar]
- Park J, Lee J, Kim W. Redox-active water-in-salt electrolyte for high-energy-density supercapacitors. ACS Energy Lett 2022; 7: 1266-1273. [Article] [Google Scholar]
- Yu J, Yu C, Song X, et al. Microscopic-level insights into solvation chemistry for nonsolvating diluents enabling high-voltage/rate aqueous supercapacitors. J Am Chem Soc 2023; 145: 13828-13838. [Article] [Google Scholar]
- Feng G, Jiang X, Qiao R, et al. Water in ionic liquids at electrified interfaces: The anatomy of electrosorption. ACS Nano 2014; 8: 11685-11694. [Article] [Google Scholar]
- Elfgen R, Gehrke S, Hollóczki O. Ionic liquids as extractants for nanoplastics. ChemSusChem 2020; 13: 5449-5459. [Article] [Google Scholar]
- Song Y, Ju J, Wang J, et al. Multi-objective optimization of ionic polymer electrolytes for high-voltage fast-charging and versatile lithium batteries. Adv Mater 2025; 37: 2500941. [Article] [Google Scholar]
- Zhang C, Jin Z, Zeng B, et al. Characterizing the brownian diffusion of nanocolloids and molecular solutions: Diffusion-ordered NMR spectroscopy vs dynamic light scattering. J Phys Chem B 2020; 124: 4631-4650. [Article] [Google Scholar]
- Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 2012; 33: 580-592. [Article] [Google Scholar]
- Bayly CI, Cieplak P, Cornell W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J Phys Chem 1993; 97: 10269-10280. [Article] [Google Scholar]
- Martínez L, Andrade R, Birgin EG, et al. Packmol: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 2009; 30: 2157-2164. [Article] [Google Scholar]
- Hess B, Kutzner C, van der Spoel D, et al. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 2008; 4: 435-447. [Article] [Google Scholar]
- Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem 2004; 25: 1157-1174. [Article] [Google Scholar]
- Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 2010; 18: 015012. [Article] [Google Scholar]
- Wang J, Wang Y. Strategies to improve the quantum computation accuracy for electrochemical windows of ionic liquids. J Phys Chem B 2024; 128: 1943-1952. [Article] [Google Scholar]
- Dong Q, Muzny CD, Kazakov A, et al. ILThermo: A free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 2007; 52: 1151-1159. [Article] [Google Scholar]
- Li K, Wang J, Song Y, et al. Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries. Nat Commun 2023; 14: 2789. [Article] [Google Scholar]
- Ahmed M, Tatrari G, Johansson P, et al. Sweet ionic liquids as high-temperature and high-voltage supercapacitor electrolytes. ACS Sustain Chem Eng 2024; 12: 16896-16904. [Article] [Google Scholar]
- Bi S, Wang R, Liu S, et al. Minimizing the electrosorption of water from humid ionic liquids on electrodes. Nat Commun 2018; 9: 5222. [Article] [Google Scholar]
- Zheng Q, Goodwin ZAH, Gopalakrishnan V, et al. Water in the electrical double layer of ionic liquids on graphene. ACS Nano 2023; 17: 9347-9360. [Article] [Google Scholar]
- Kim TY, Lee HW, Stoller M, et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 2011; 5: 436-442. [Article] [Google Scholar]
- Fajardo OY, Bresme F, Kornyshev AA, et al. Water in ionic liquid lubricants: Friend and foe. ACS Nano 2017; 11: 6825-6831. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
