Open Access
Natl Sci Open
Volume 2, Number 1, 2023
Article Number 20220033
Number of page(s) 11
Section Materials Science
Published online 03 January 2023
  • Kennes DM, Claassen M, Xian L, et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat Phys 2021; 17: 155-163. [Article] ArXiv: 2011.12638 [Google Scholar]
  • Bistritzer R, MacDonald AH. Moiré bands in twisted double-layer graphene. Proc Natl Acad Sci USA 2011; 108: 12233-12237. [Article] ArXiv: 1009.4203 [Google Scholar]
  • Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018; 556: 80-84. [Article] ArXiv: 1802.00553 [Google Scholar]
  • Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018; 556: 43-50. [Article] ArXiv: 1803.02342 [Google Scholar]
  • Sharpe AL, Fox EJ, Barnard AW, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019; 365: 605-608. [Article] ArXiv: 1901.03520 [Google Scholar]
  • Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 2020; 367: 900-903. [Article] ArXiv: 1907.00261 [Google Scholar]
  • Vizner Stern M, Waschitz Y, Cao W, et al. Interfacial ferroelectricity by van der Waals sliding. Science 2021; 372: 1462-1466. [Article] ArXiv: 2010.05182 [Google Scholar]
  • Yasuda K, Wang X, Watanabe K, et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 2021; 372: 1458-1462. [Article] ArXiv: 2010.06600 [Google Scholar]
  • Zheng Z, Ma Q, Bi Z, et al. Unconventional ferroelectricity in moiré heterostructures. Nature 2020; 588: 71-76. [Article] [Google Scholar]
  • Woods CR, Ares P, Nevison-Andrews H, et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat Commun 2021; 12: 347. [Article] [Google Scholar]
  • Li L, Wu M. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 2017; 11: 6382-6388. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang X, Yasuda K, Zhang Y, et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat Nanotechnol 2022; 17: 367–371. [Article] [Google Scholar]
  • Weston A, Castanon EG, Enaldiev V, et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat Nanotechnol 2022; 17: 390–395. [Article] [Google Scholar]
  • Zhao P, Xiao C, Yao W. Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate. npj 2D Mater Appl 2021; 5: 38. [Article] [Google Scholar]
  • Cai X, An L, Feng X, et al. Layer-dependent interface reconstruction and strain modulation in twisted WSe2. Nanoscale 2021; 13: 13624-13630. [Article] [Google Scholar]
  • Li E, Hu JX, Feng X, et al. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat Commun 2021; 12: 5601. [Article] ArXiv: 2103.06479 [Google Scholar]
  • Lin Z, Si C, Duan S, et al. Rashba splitting in bilayer transition metal dichalcogenides controlled by electronic ferroelectricity. Phys Rev B 2019; 100: 155408. [Article] ArXiv: 1911.00976 [Google Scholar]
  • An L, Cai X, Pei D, et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz 2021; 5: 1309-1316. [Article] ArXiv: 1907.03966 [Google Scholar]
  • Resta R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev Mod Phys 1994; 66: 899-915. [Article] [Google Scholar]
  • Ikeda N, Ohsumi H, Ohwada K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 2005; 436: 1136-1138. [Article] [Google Scholar]
  • Lunkenheimer P, Müller J, Krohns S, et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat Mater 2012; 11: 755-758. [Article] ArXiv: 1111.2752 [Google Scholar]
  • Naik MH, Jain M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys Rev Lett 2018; 121: 266401. [Article] ArXiv: 1803.09240 [Google Scholar]
  • Wang L, Shih EM, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat Mater 2020; 19: 861-866. [Article] [Google Scholar]
  • Movva HCP, Rai A, Kang S, et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 2015; 9: 10402-10410. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Angeli M, MacDonald AH. Γ valley transition metal dichalcogenide moiré bands. Proc Natl Acad Sci USA 2021; 118: e2021826118. [Article] ArXiv: 2008.01735 [Google Scholar]
  • Enaldiev VV, Ferreira F, Fal’ko VI. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci Rep 2021; 11: 13422 [Google Scholar]
  • Enaldiev V , Zólyomi V, Yelgel C, et al. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Phys Rev Lett 2020; 124: 206101. [Article] ArXiv: 1911.12804 [Google Scholar]
  • Qi L, Ruan S, Zeng YJ. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv Mater 2021; 33: 2005098. [Article] [CrossRef] [Google Scholar]
  • Cui C, Xue F, Hu WJ, et al. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater Appl 2018; 2: 18. [Article] [Google Scholar]
  • Guan Z, Hu H, Shen X, et al. Recent progress in two-dimensional ferroelectric materials. Adv Electron Mater 2020; 6: 1900818. [Article] [CrossRef] [Google Scholar]
  • Magorrian SJ, Enaldiev VV, Zólyomi V, et al. Multifaceted moiré superlattice physics in twisted WSe2 bilayers. Phys Rev B 2021; 104: 125440. [Article] [Google Scholar]
  • Zhang Y, Yuan NFQ, Fu L. Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices. Phys Rev B 2020; 102: 201115. [Article] ArXiv: 1910.14061 [Google Scholar]
  • Li T, Jiang S, Li L, et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 2021; 597: 350-354. [Article] ArXiv: 2103.09779 [Google Scholar]
  • Liu Y, Zhang J, Meng S, et al. Electric field tunable ultrafast interlayer charge transfer in graphene/WS2 heterostructure. Nano Lett 2021; 21: 4403-4409. [Article] [Google Scholar]
  • Lourtioz JM, Abstreiter G, Meyerson B. Group IV Heterostructures, Physics and Devices (Si, Ge, C, Sn). Oxford: Elsevier Science & Technology, 1998 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.