Open Access
Natl Sci Open
Volume 2, Number 1, 2023
Article Number 20220034
Number of page(s) 10
Section Materials Science
Published online 10 January 2023
  • Arthur JR. Molecular beam epitaxy of compound semiconductors. Surf Sci 1994; 299-300: 818-823. [Article] [Google Scholar]
  • Matthews JW, Blakeslee AE. Defects in epitaxial multilayers. J Cryst Growth 1974, 27: 118-125 [NASA ADS] [Google Scholar]
  • Vallet M, Claveau Y, Warot-Fonrose B, et al. Highly strained AlAs-type interfaces in InAs/AlSb heterostructures. Appl Phys Lett 2016; 108: 211908. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Niehle M, Rodriguez JB, Cerutti L, et al. On the origin of threading dislocations during epitaxial growth of III-Sb on Si(001): A comprehensive transmission electron tomography and microscopy study. Acta Mater 2018; 143: 121-129. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ni Y, Zhou D, Chen Z, et al. Influence of the carbon-doping location on the material and electrical properties of a AlGaN/GaN heterostructure on Si substrate. Semicond Sci Technol 2015; 30: 105037. [Article] [Google Scholar]
  • Liao L, Bai J, Qu Y, et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc Natl Acad Sci USA 2010; 107: 6711-6715. [Article] [Google Scholar]
  • Liao L, Bai J, Lin YC, et al. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv Mater 2010; 22: 1941-1945. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liao L, Bai J, Cheng R, et al. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett 2010; 10: 1917-1921. [Article] [Google Scholar]
  • Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotech 2010; 5: 722-726. [Article] ArXiv: 1005.4917 [Google Scholar]
  • Liao L, Lin YC, Bao M, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010; 467: 305-308. [Article] [Google Scholar]
  • Liao L, Bai J, Cheng R, et al. Sub-100 nm channel length graphene transistors. Nano Lett 2010; 10: 3952-3956. [Article] [Google Scholar]
  • Liao L, Duan X. Graphene-dielectric integration for graphene transistors. Mater Sci Eng-R-Rep 2010; 70: 354-370. [Article] [Google Scholar]
  • Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun 2011; 2: 579. [Article] [Google Scholar]
  • Liao L, Bai J, Cheng R, et al. Scalable fabrication of self-aligned graphene transistors and circuits on glass. Nano Lett 2012; 12: 2653-2657. [Article] [Google Scholar]
  • Cheng R, Bai J, Liao L, et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci USA 2012; 109: 11588-11592. [Article] [Google Scholar]
  • Britnell L, Gorbachev RV, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012; 335: 947-950. [Article] ArXiv: 1112.4999 [Google Scholar]
  • Yu WJ, Li Z, Zhou H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater 2013; 12: 246-252. [Article] [Google Scholar]
  • Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013; 499: 419-425. [Article] [Google Scholar]
  • Liu Y, Weiss NO, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater 2016; 1: 16042. [Article] [Google Scholar]
  • Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018; 557: 696-700. [Article] [Google Scholar]
  • Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature 2019; 567: 323-333. [Article] [Google Scholar]
  • Yu WJ, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotech 2013; 8: 952-958. [Article] [Google Scholar]
  • Lee CH, Lee GH, van der Zande AM, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nanotech 2014; 9: 676-681. [Article] ArXiv: 1403.3062 [Google Scholar]
  • Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett 2014; 14: 5590-5597. [Article] ArXiv: 1403.3447 [Google Scholar]
  • Woessner A, Lundeberg MB, Gao Y, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater 2015; 14: 421-425. [Article] ArXiv: 1409.5674 [Google Scholar]
  • Zhong D, Seyler KL, Linpeng X, et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv 2017; 3: 1603113. [Article] ArXiv: 1704.00841 [Google Scholar]
  • Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017; 546: 270-273. [Article] ArXiv: 1703.05892 [Google Scholar]
  • Qian Q, Ren H, Zhou J, et al. Chiral molecular intercalation superlattices. Nature 2022; 606: 902-908. [Article] [Google Scholar]
  • Liu L, Kong L, Li Q, et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat Electron 2021; 4: 342-347. [Article] [Google Scholar]
  • Shin I, Cho WJ, An ES, et al. Spin-orbit torque switching in an all-van der Waals heterostructure. Adv Mater 2022; 34: 2101730. [Article] ArXiv: 2102.09300 [NASA ADS] [CrossRef] [Google Scholar]
  • Ai L, Zhang E, Yang J, et al. Van der Waals ferromagnetic Josephson junctions. Nat Commun 2021; 12: 6580. [Article] ArXiv: 2101.04323 [Google Scholar]
  • Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018; 556: 80-84. [Article] ArXiv: 1802.00553 [Google Scholar]
  • Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018; 556: 43-50. [Article] ArXiv: 1803.02342 [Google Scholar]
  • Tran K, Moody G, Wu F, et al. Evidence for Moiré excitons in van der Waals heterostructures. Nature 2019; 567: 71-75. [Article] ArXiv: 1807.03771 [Google Scholar]
  • Seyler KL, Rivera P, Yu H, et al. Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019; 567: 66-70. [Article] ArXiv: 1809.04562 [Google Scholar]
  • Alexeev EM, Ruiz-Tijerina DA, Danovich M, et al. Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature 2019; 567: 81-86. [Article] ArXiv: 1904.06214 [Google Scholar]
  • Jin C, Regan EC, Yan A, et al. Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019; 567: 76-80. [Article] ArXiv: 1812.09815 [Google Scholar]
  • Liu Y, Duan X, Shin HJ, et al. Promises and prospects of two-dimensional transistors. Nature 2021; 591: 43-53. [Article] [Google Scholar]
  • Amick JA, Schnable GL, Vossen JL. Deposition techniques for dielectric films on semiconductor devices. J Vacuum Sci Tech 1977; 14: 1053-1063. [Article] [Google Scholar]
  • Park JH, Movva HCP, Chagarov E, et al. In situ observation of initial stage in dielectric growth and deposition of ultrahigh nucleation density dielectric on two-dimensional surfaces. Nano Lett 2015; 15: 6626-6633. [Article] [Google Scholar]
  • Leonhardt A, Chiappe D, Afanas’ev VV, et al. Material-selective doping of 2D TMDC through AlxOy encapsulation. ACS Appl Mater Interfaces 2019; 11: 42697-42707. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Cheng R, Jiang S, Chen Y, et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat Commun 2014; 5: 5143. [Article] [Google Scholar]
  • Lee SJ, Lin Z, Huang J, et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat Electron 2020; 3: 630-637. [Article] [Google Scholar]
  • Chen P, Atallah TL, Lin Z, et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 2021; 599: 404-410. [Article] [Google Scholar]
  • Wang J, Cai L, Chen J, et al. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci Adv 2021; 7: eabf8744. [Article] [Google Scholar]
  • Haick H, Ambrico M, Ghabboun J, et al. Contacting organic molecules by metal evaporation. Phys Chem Chem Phys 2004; 6: 4538-4541. [Article] [Google Scholar]
  • Spicer WE, Chye PW, Garner CM, et al. The surface electronic structure of 3–5 compounds and the mechanism of Fermi level pinning by oxygen (passivation) and metals (Schottky barriers). Surf Sci 1979; 86: 763-788. [Article] [Google Scholar]
  • Wang Y, Wan Z, Qian Q, et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat Nanotechnol 2020; 15: 768-775. [Article] [Google Scholar]
  • Qian Q, Wan Z, Takenaka H, et al. Photocarrier induced persistent structural polarization in soft-lattice lead halide perovskites. Nat Nanotechnol 2022; [Article] [Google Scholar]
  • Jia C, Famili M, Carlotti M, et al. Quantum interference mediated vertical molecular tunneling transistors. Sci Adv 2018; 4: eaat8237. [Article] [Google Scholar]
  • Famili M, Jia C, Liu X, et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 2019; 5: 474-484. [Article] [CrossRef] [Google Scholar]
  • Jia C, Grace IM, Wang P, et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 2020; 6: 1172-1182. [Article] [CrossRef] [Google Scholar]
  • Liu Y, Wang P, Wang Y, et al. Van der Waals integrated devices based on nanomembranes of 3D materials. Nano Lett 2020; 20: 1410-1416. [Article] [Google Scholar]
  • Wang L, Wang P, Huang J, et al. A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nat Nanotechnol 2020; 17: 1206-1213. [Article] [Google Scholar]
  • Ren H, Wan Z, Duan X. Van der Waals superlattices. Natl Sci Rev 2022; 9: 2021-2023. [Article] [Google Scholar]
  • Zhao B, Wan Z, Liu Y, et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 2021; 591: 385-390. [Article] [Google Scholar]
  • Wang C, He Q, Halim U, et al. Monolayer atomic crystal molecular superlattices. Nature 2018; 555: 231-236. [Article] [Google Scholar]
  • Lin Z, Liu Y, Halim U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018; 562: 254-258. [Article] [Google Scholar]
  • Qian Q, Wan Z, Duan X. Boosting superconductivity in organic-inorganic superlattices. Sci Bull 2020; 65: 177-178. [Article] [Google Scholar]
  • Lin Z, Wan Z, Song F, et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 2021; 7: 1887-1902. [Article] [CrossRef] [Google Scholar]
  • Zhao Y, Zhang C, Kohler DD, et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 2020; 370: 442-445. [Article] [Google Scholar]
  • Li J, Yang X, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020; 579: 368-374. [Article] [Google Scholar]
  • Zhang Z, Chen P, Duan X, et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017; 357: 788-792. [Article] [Google Scholar]
  • Zhang Z, Huang Z, Li J, et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat Nanotechnol 2022; 17: 493-499. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.