Natl Sci Open
Volume 2, Number 2, 2023
Special Topic: Chemistry Boosts Carbon Neutrality
Article Number 20220024
Number of page(s) 36
Section Chemistry
Published online 31 October 2022
  • Matthessen R, Fransaer J, Binnemans K, et al. Electrocarboxylation: Towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J Org Chem 2014; 10: 2484-2500. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Edlund U, Albertsson AC. Polyesters based on diacid monomers. Adv Drug Deliver Rev 2003; 55: 585-609. [Article] [CrossRef] [Google Scholar]
  • Krausova B, Slavikova B, Nekardova M, et al. Positive modulators of the N-methyl-D-aspartate receptor: structure-activity relationship study of steroidal 3-hemiesters. J Med Chem 2018; 61: 4505-4516. [Article] [Google Scholar]
  • Castellan A, Bart JCJ, Cavallaro S. Industrial production and use of adipic acid. Catal Today 1991; 9: 237-254. [Article] [CrossRef] [Google Scholar]
  • Hwang KC, Sagadevan A. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science 2014; 346: 1495-1498. [Article] [Google Scholar]
  • Lapworth A, Baker B. Phenylsuccinic acid. Org Synth 1928; 8: 88 [Google Scholar]
  • Yang J, Liu J, Neumann H, et al. Direct synthesis of adipic acid esters via palladium-catalyzed carbonylation of 1,3-dienes. Science 2019; 366: 1514-1517. [Article] [Google Scholar]
  • Aresta M. Carbon Dioxide as Chemical Feedstock. Weinheim: Wiley-VCH, 2010 [CrossRef] [Google Scholar]
  • He M, Sun Y, Han B. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew Chem Int Ed 2013; 52: 9620-9633. [Article] [CrossRef] [Google Scholar]
  • Yi Y, Hang W, Xi C. Recent advance of transition-metal-catalyzed tandem carboxylation reaction of unsaturated hydrocarbons with organometallic reagents and CO2. Chin J Org Chem 2021; 41: 80-93. [Article] [CrossRef] [Google Scholar]
  • Ran CK, Chen XW, Gui YY, et al. Recent advances in asymmetric synthesis with CO2. Sci China Chem 2020; 63: 1336-1351. [Article] [Google Scholar]
  • Wang L, Qi C, Xiong W, et al. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. Chin J Catal 2022; 43: 1598-1617. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Liao LL, Song L, Yan SS, et al. Highly reductive photocatalytic systems in organic synthesis. Trends Chem 2022; 4: 512-527. [Article] [Google Scholar]
  • Zhou C, Li M, Yu J, et al. Recent progress in the carboxylation/cyclization reactions using carbon dioxide as the C1 source. Chin J Org Chem 2020; 40: 2221-2231. [Article] [CrossRef] [Google Scholar]
  • Ye JH, Ju T, Huang H, et al. Radical carboxylative cyclizations and carboxylations with CO2. Acc Chem Res 2021; 54: 2518-2531. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Chen K, Li H, He L. Advance and prospective on CO2 activation and transformation strategy. Chin J Org Chem 2020; 40: 2195-2207. [Article] [CrossRef] [Google Scholar]
  • Wawzonek S, Blaha EW, Behkey R, et al. Polarographic studies in acetonitrile and dimethylformamide. J Electrochem Soc 1955; 102: 235-242. [Article] [CrossRef] [Google Scholar]
  • Wawzonek S, Wearring D. Polarographic studies in acetonitrile and dimethylformamide. IV. Stability of anion-free radicals. J Am Chem Soc 1959; 81: 2067-2069. [Article] [CrossRef] [Google Scholar]
  • Dietz R, Peover ME. Stereochemical effects in the electrochemistry of some hindered stilbenes in dimethylformamide. Discuss Faraday Soc 1968; 45: 154-166. [Article] [CrossRef] [Google Scholar]
  • Tyssee DA, Baizer MM. Electrocarboxylation. I. mono- and dicarboxylation of activated olefins. J Org Chem 1974; 39: 2819-2823. [Article] [Google Scholar]
  • Dérien S, Clinet JC, Duñach E, et al. Electrochemical incorporation of carbon dioxide into alkenes by nickel complexes. Tetrahedron 1992; 48: 5235-5248. [Article] [Google Scholar]
  • Senboku H, Komatsu H, Fujimura Y, et al. Efficient electrochemical dicarboxylation of phenyl-substituted alkenes: Synthesis of 1-phenylalkane-1,2-dicarboxylic acids. Synlett 2001; 2001(3): 0418-0420. [Article] [Google Scholar]
  • Filardo G, Gambino S, Silvestri G, et al. Electrocarboxylation of styrene through homogeneous redox catalysis. J Electroanal Chem Interfacial Electrochem 1984; 177: 303-309. [Article] [CrossRef] [Google Scholar]
  • Yuan GQ, Jiang HF, Lin C, et al. Efficient electrochemical synthesis of 2-arylsuccinic acids from CO2 and aryl-substituted alkenes with nickel as the cathode. Electrochim Acta 2008; 53: 2170-2176. [Article] [CrossRef] [Google Scholar]
  • Wang H, Lin MY, Fang HJ, et al. Electrochemical dicarboxylation of styrene: Synthesis of 2-phenylsuccinic acid. Chin J Chem 2007; 25: 913-916. [Article] [CrossRef] [Google Scholar]
  • Gambino S, Silvestri G. On the electrochemical reduction of carbon dioxide and ethylene. Tetrahedron Lett 1973; 14: 3025–3028 [Google Scholar]
  • Ballivet-Tkatchenko D, Folest JC, Tanji J. Electrocatalytic reduction of CO2 for the selective carboxylation of olefins. Appl Organometal Chem 2000; 14: 847-849. [Article] [CrossRef] [Google Scholar]
  • Bringmann J, Dinjus E. Electrochemical synthesis of carboxylic acids from alkenes using various nickel-organic mediators: CO2 as C1-synthon. Appl Organometal Chem 2001; 15: 135-140. [Article] [CrossRef] [Google Scholar]
  • Alexopoulou KI, Leibold M, Walter O, et al. Synthesis and characterization of a series of nickel complexes with tripodal and related ligands: electroreductive coupling of alkynes and carbon dioxide. Eur J Inorg Chem 2017; 2017(40): 4722-4732. [Article] [CrossRef] [Google Scholar]
  • Li CH, Yuan GQ, Ji XC, et al. Highly regioselective electrochemical synthesis of dioic acids from dienes and carbon dioxide. Electrochim Acta 2011; 56: 1529-1534. [Article] [CrossRef] [Google Scholar]
  • Matthessen R, Fransaer J, Binnemans K, et al. Electrochemical dicarboxylation of conjugated fatty acids as an efficient valorization of carbon dioxide. RSC Adv 2013; 3: 4634-4642. [Article] [Google Scholar]
  • Matthessen R, Fransaer J, Binnemans K, et al. Paired electrosynthesis of diacid and diol precursors using dienes and CO2 as the carbon source. ChemElectroChem 2015; 2: 73-76. [Article] [CrossRef] [Google Scholar]
  • Kim Y, Park GD, Balamurugan M, et al. Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water. Adv Sci 2020; 7: 1900137. [Article] [CrossRef] [Google Scholar]
  • Alkayal A, Tabas V, Montanaro S, et al. Harnessing applied potential: Selective β-hydrocarboxylation of substituted olefins. J Am Chem Soc 2020; 142: 1780-1785. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Sun GQ, Zhang W, Liao LL, et al. Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2. Nat Commun 2021; 12: 7086. [Article] [Google Scholar]
  • Duñach E, Dérien S, Périchon J. Nickel-catalyzed reductive electrocarboxylation of disubstituted alkynes. J Organomet Chem 1989; 364: C33-C36. [Article] [Google Scholar]
  • Derien S, Clinet JC, Dunach E, et al. Activation of carbon dioxide: Nickel-catalyzed electrochemical carboxylation of diynes. J Org Chem 1993; 58: 2578-2588. [Article] [Google Scholar]
  • Yuan GQ, Jiang HF, Lin C. Efficient electrochemical dicarboxylations of arylacetylenes with carbon dioxide using nickel as the cathode. Tetrahedron 2008; 64: 5866-5872. [Article] [Google Scholar]
  • Li C, Yuan G, Jiang H. Electrocarboxylation of alkynes with carbon dioxide in the presence of metal salt catalysts. Chin J Chem 2010; 28: 1685-1689. [Article] [CrossRef] [Google Scholar]
  • Li CH, Yuan GQ, Qi CR, et al. Copper-catalyzed electrochemical synthesis of alkylidene lactones from carbon dioxide and 1,4-diarylbuta-1,3-diynes. Tetrahedron 2013; 69: 3135-3140. [Article] [Google Scholar]
  • Katayama A, Senboku H, Hara S. Aryl radical cyclization with alkyne followed by tandem carboxylation in methyl 4-tert-butylbenzoate-mediated electrochemical reduction of 2-(2-propynyloxy)bromobenzenes in the presence of carbon dioxide. Tetrahedron 2016; 72: 4626-4636. [Article] [Google Scholar]
  • Yuan G, Li L, Jiang H, et al. Electrocarboxylation of carbon dioxide with polycyclic aromatic hydrocarbons using Ni as the cathode. Chin J Chem 2010; 28: 1983-1988. [Article] [CrossRef] [Google Scholar]
  • You Y, Kanna W, Takano H, et al. Electrochemical dearomative dicarboxylation of heterocycles with highly negative reduction potentials. J Am Chem Soc 2022; 144: 3685-3695. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Pradhan S, Roy S, Sahoo B, et al. Utilization of CO2 feedstock for organic synthesis by visible-light photoredox catalysis. Chem Eur J 2021; 27: 2254-2269. [Article] [CrossRef] [PubMed] [Google Scholar]
  • He X, Qiu LQ, Wang WJ, et al. Photocarboxylation with CO2: An appealing and sustainable strategy for CO2 fixation. Green Chem 2020; 22: 7301-7320. [Article] [CrossRef] [Google Scholar]
  • Ran CK, Liao LL, Gao TY, et al. Recent progress and challenges in carboxylation with CO2. Curr Opin Green Sustain Chem 2021; 32: 100525. [Article] [CrossRef] [Google Scholar]
  • Niu YN, Jin XH, Liao LL, et al. Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2. Sci China Chem 2021; 64: 1164-1169. [Article] [Google Scholar]
  • Bertuzzi G, Cerveri A, Lombardi L, et al. Tandem functionalization-carboxylation reactions of π-systems with CO2. Chin J Chem 2021; 39: 3116-3126. [Article] [CrossRef] [Google Scholar]
  • Yi Y, Xi C. Photo-catalyzed sequential dearomatization/carboxylation of benzyl o-halogenated aryl ether with CO2 leading to spirocyclic carboxylic acids. Chin J Catal 2022; 43: 1652-1656. [Article] [CrossRef] [Google Scholar]
  • Jing K, Wei MK, Yan SS, et al. Visible-light photoredox-catalyzed carboxylation of benzyl halides with CO2: Mild and transition-metal-free. Chin J Catal 2022; 43: 1667-1673. [Article] [CrossRef] [Google Scholar]
  • Morgenstern DA, Wittrig RE, Fanwick PE, et al. Photoreduction of carbon dioxide to its radical anion by nickel cluster [Ni33-I)2(dppm)3]: Formation of two carbon-carbon bonds via addition of carbon dioxide radical anion to cyclohexene. J Am Chem Soc 1993; 115: 6470-6471. [Article] [CrossRef] [Google Scholar]
  • Seo H, Liu A, Jamison TF. Direct β-selective hydrocarboxylation of styrenes with CO2 enabled by continuous flow photoredox catalysis. J Am Chem Soc 2017; 139: 13969-13972. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Nikolaitchik AV, Rodgers MAJ, Neckers DC. Reductive photocarboxylation of phenanthrene: A mechanistic investigation. J Org Chem 1996; 61: 1065-1072. [Article] [Google Scholar]
  • Ju T, Zhou YQ, Cao KG, et al. Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nat Catal 2021; 4: 304-311. [Article] [Google Scholar]
  • Wright GF. Addition of alkali metals to the stilbenes. J Am Chem Soc 1939; 61: 2106-2110. [Article] [CrossRef] [Google Scholar]
  • Hoberg H, Apotecher B. α,ω-Disäuren aus butadien und kohlendioxid an nickel(0). J Organomet Chem 1984; 270: c15-c17. [Article] [Google Scholar]
  • Behr A, Kanne U. Nickel complex induced C–C linkage of carbon dioxide with trienes. J Organomet Chem 1986; 317: C41-C44. [Article] [Google Scholar]
  • Takimoto M, Mori M. Cross-coupling reaction of oxo-π-allylnickel complex generated from 1,3-diene under an atmosphere of carbon dioxide. J Am Chem Soc 2001; 123: 2895-2896. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tortajada A, Ninokata R, Martin R. Ni-catalyzed site-selective dicarboxylation of 1,3-dienes with CO2. J Am Chem Soc 2018; 140: 2050-2053. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Nie W, Shao Y, Ahlquist MSG, et al. Mechanistic study on the regioselective Ni-catalyzed dicarboxylation of 1,3-dienes with CO2. Org Chem Front 2020; 7: 4080-4088. [Article] [Google Scholar]
  • Hoberg H, Ballesteros A, Sigan A, et al. Ligandgesteuerte ringkontraktion von Nickela-fünf-in vierringkomplexe: Neuartige startsysteme für die präparative chemie. J Organomet Chem 1991; 407: C23-C29. [Article] [Google Scholar]
  • Takahashi K, Sakurazawa Y, Iwai A, et al. Catalytic synthesis of a methylmalonate salt from ethylene and carbon dioxide through photoinduced activation and photoredox-catalyzed reduction of nickelalactones. ACS Catal 2022; 12: 3776-3781. [Article] [CrossRef] [Google Scholar]
  • Takimoto M, Kawamura M, Mori M, et al. Nickel-catalyzed regio- and stereoselective double carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide and its application to the synthesis of chaetomellic acid a anhydride. Synlett 2005; 13: 2019-2022. [Article] [Google Scholar]
  • Wang X, Lim YN, Lee C, et al. 1,5,7-Triazabicyclo[4.4.0]dec-1-ene-mediated acetylene dicarboxylation and alkyne carboxylation using carbon dioxide. Eur J Org Chem 2013; 2013(10): 1867-1871. [Article] [CrossRef] [Google Scholar]
  • Fujihara T, Horimoto Y, Mizoe T, et al. Nickel-catalyzed double carboxylation of alkynes employing carbon dioxide. Org Lett 2014; 16: 4960-4963. [Article] [Google Scholar]
  • Zhang WZ, Yang MW, Yang XT, et al. Double carboxylation of o-alkynyl acetophenone with carbon dioxide. Org Chem Front 2016; 3: 217-221. [Article] [Google Scholar]
  • Juhl M, Laursen SLR, Huang Y, et al. Copper-catalyzed carboxylation of hydroborated disubstituted alkenes and terminal alkynes with cesium fluoride. ACS Catal 2017; 7: 1392-1396. [Article] [CrossRef] [Google Scholar]
  • Hao L, Xia Q, Zhang Q, et al. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chin J Catal 2021; 42: 1903-1920. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Liao LL, Wang ZH, Cao KG, et al. Electrochemical ring-opening dicarboxylation of strained carbon–carbon single bonds with CO2: Facile synthesis of diacids and derivatization into polyesters. J Am Chem Soc 2022; 144: 2062-2068. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Thompson SJ, Gohndrone TR, Lail M. A CO2 utilization approach towards the synthesis of terephthalic acid via a catalytic double carboxylation. J CO2 Utilization 2018; 24: 256-260. [Article] [Google Scholar]
  • Dang L, Lin Z, Marder TB. DFT studies on the carboxylation of arylboronate esters with CO2 catalyzed by copper(I) complexes. Organometallics 2010; 29: 917-927. [Article] [Google Scholar]
  • van Ausdall BR, Poth NF, Kincaid VA, et al. Imidazolidene carboxylate bound MBPh4 complexes (M = Li, Na) and their relevance in transcarboxylation reactions. J Org Chem 2011; 76: 8413-8420. [Article] [Google Scholar]
  • Martínez-Martínez AJ, Kennedy AR, Mulvey RE, et al. Directed ortho-meta′- and meta-meta′-dimetalations: A template base approach to deprotonation. Science 2014; 346: 834-837. [Article] [Google Scholar]
  • Banerjee A, Dick GR, Yoshino T, et al. Carbon dioxide utilization via carbonate-promoted C–H carboxylation. Nature 2016; 531: 215-219. [Article] [Google Scholar]
  • Boogaerts IIF, Nolan SP. Carboxylation of C–H bonds using N-heterocyclic carbene gold(I) complexes. J Am Chem Soc 2010; 132: 8858-8859. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Boogaerts IIF, Fortman GC, Furst MRL, et al. Carboxylation of N–H/C–H bonds using N-heterocyclic carbene copper(I) complexes. Angew Chem Int Ed 2010; 49: 8674-8677. [Article] [CrossRef] [Google Scholar]
  • Mizuno H, Takaya J, Iwasawa N. Rhodium(I)-catalyzed direct carboxylation of arenes with CO2 via chelation-assisted C–H bond activation. J Am Chem Soc 2011; 133: 1251-1253. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Shigeno M, Sasaki K, Nozawa-Kumada K, et al. Double-carboxylation of two C–H bonds in 2-alkylheteroarenes using LiO-t-Bu/CsF. Org Lett 2019; 21: 4515-4519. [Article] [Google Scholar]
  • Mita T, Ishii S, Higuchi Y, et al. Pd-catalyzed dearomative carboxylation of indolylmethanol derivatives. Org Lett 2018; 20: 7603-7606. [Article] [Google Scholar]
  • Mita T, Masutani H, Ishii S, et al. Catalytic carboxylation of heteroaromatic compounds: Double and single carboxylation with CO2. Synlett 2019; 30: 841-844. [Article] [Google Scholar]
  • Liao LL, Cao GM, Jiang YX, et al. α-Amino acids and peptides as bifunctional reagents: Carbocarboxylation of activated alkenes via recycling CO2. J Am Chem Soc 2021; 143: 2812-2821. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Gao Y, Zhou C, et al. Visible-light-driven reductive carboarylation of styrenes with CO2 and aryl halides. J Am Chem Soc 2020; 142: 8122-8129. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hendy CM, Smith GC, Xu Z, et al. Radical chain reduction via carbon dioxide radical anion (CO2•–). J Am Chem Soc 2021; 143: 8987-8992. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Alektiar SN, Wickens ZK. Photoinduced hydrocarboxylation via thiol-catalyzed delivery of formate across activated alkenes. J Am Chem Soc 2021; 143: 13022-13028. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu X, Ran C, Wen M, et al. Prediction of multicomponent reaction yields using machine learning. Chin J Chem 2021; 39: 3231-3237. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.