Open Access
Natl Sci Open
Volume 2, Number 2, 2023
Article Number 20220027
Number of page(s) 9
Section Information Sciences
Published online 23 September 2022
  • Ghani T, Armstrong M, Auth C, et al. A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. In: Proceedings of IEEE International Electron Devices Meeting 2003, 2003. 11.6.1-.6.3 [Google Scholar]
  • Thompson SE, Armstrong M, Auth C, et al. A 90-nm logic technology featuring strained-silicon. IEEE Trans Electron Devices 2004; 51: 1790-1797. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Das UK, Bhattacharyya TK. Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans Electron Devices 2020; 67: 2633-2638. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Loubet N, Hook T, Montanini P, et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Proceedings of 2017 Symposium on VLSI Technology, 2017. T230-T1 [Google Scholar]
  • Reboh S, Coquand R, Loubet N, et al. Imaging, modeling and engineering of strain in gate-all-around nanosheet transistors. In: Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), 2019. 1–4 [Google Scholar]
  • Anastassakis E. Strain characterization of polycrystalline diamond and silicon systems. J Appl Phys 1999; 86: 249-258. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • De Wolf I, Vanhellemont J, Romano-Rodríguez A, et al. Micro-Raman study of stress distribution in local isolation structures and correlation with transmission electron microscopy. J Appl Phys 1992; 71: 898-906. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen CC, Yu BH, Liu J, et al. Structural characteristics of SiGe/Si materials investigated by Raman spectroscopy. Met Mater Int 2005; 11: 279-283. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Dobrosz P, Bull SJ, Olsen SH, et al. The use of Raman spectroscopy to identify strain and strain relaxation in strained Si/SiGe structures. Surf Coatings Tech 2005; 200: 1755-1760. [Article] [Google Scholar]
  • Dobrosz P, Bull SJ, Olsen SH, et al. Measurement of the residual macro and microstrain in strained Si/SiGe using Raman spectroscopy. MRS Proc 2020; 809: 34. [Article] [Google Scholar]
  • Koester SJ, Rim K, Chu JO, et al. Effect of thermal processing on strain relaxation and interdiffusion in Si/SiGe heterostructures studied using Raman spectroscopy. Appl Phys Lett 2001; 79: 2148-2150. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Nakashima S, Mitani T, Ninomiya M, et al. Raman investigation of strain in Si∕SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands. J Appl Phys 2006; 99: 053512. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • De Wolf I, Maes HE, Jones SK. Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment. J Appl Phys 1996; 79: 7148-7156. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hashemi P, Gomez L, Hoyt JL, et al. Asymmetric strain in nanoscale patterned strained-Si/strained-Ge/strained-Si heterostructures on insulator. Appl Phys Lett 2007; 91: 083109. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hecker M, Roelke M, Hermann P, et al. Strain distribution analysis in Si/SiGe line structures for CMOS technology using Raman spectroscopy. J Phys-Conf Ser 2010; 209: 012008. [Article] [Google Scholar]
  • Moutanabbir O, Reiche M, Hähnel A, et al. UV-Raman imaging of the in-plane strain in single ultrathin strained silicon-on-insulator patterned structure. Appl Phys Lett 2010; 96: 233105. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Moutanabbir O, Reiche M, Hähnel A, et al. Multiwavelength micro-Raman analysis of strain in nanopatterned ultrathin strained silicon-on-insulator. Appl Phys Lett 2010; 97: 053105. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Takei M, Hashiguchi H, Yamaguchi T, et al. Channel strain measurement in 32-nm-node complementary metal-oxide-semiconductor field-effect transistor by Raman spectroscopy. Jpn J Appl Phys 2012; 51: 04DA04. [Article] [Google Scholar]
  • Takei M, Kosemura D, Nagata K, et al. Channel strain analysis in high-performance damascene-gate p-metal-oxide-semiconductor field effect transistors using high-spatial resolution Raman spectroscopy. J Appl Phys 2010; 107: 124507. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Adu KW, Gutiérrez HR, Kim UJ, et al. Confined phonons in Si nanowires. Nano Lett 2005; 5: 409-414. [Article] [Google Scholar]
  • Hu R, Yu L. Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications. Nanotechnology 2022; 33: 222002. [Article] [Google Scholar]
  • Schmidt D, Durfee C, Li J, et al. In-line Raman spectroscopy for stacked nanosheet device manufacturing. In: Proceedings of Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV, 2021. 116111T [Google Scholar]
  • Holländer B, Buca D, Mantl S, et al. Wet chemical etching of Si, Si1−xGex, and Ge in HF:H2O2:CH3COOH. J Electrochem Soc 2010; 157: H643. [Article] [CrossRef] [Google Scholar]
  • De Graaf G, Wolffenbuttel RF. Illumination source identification using a CMOS optical microsystem. IEEE Trans Instrum Meas 2004; 53: 238-242. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Poborchii V, Tada T, Kanayama T. Edge-enhanced Raman scattering in Si nanostripes. Appl Phys Lett 2009; 94: 131907. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Orlowski M, Ndoye C, Liu T, et al. Si, SiGe, Ge, and III-V semiconductor nanomembranes and nanowires enabled by SiGe epitaxy. ECS Trans 2010; 33: 777-789. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Perova TS, Wasyluk J, Lyutovich K, et al. Composition and strain in thin Si1−xGex virtual substrates measured by micro-Raman spectroscopy and x-ray diffraction. J Appl Phys 2011; 109: 033502. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • De Wolf I. Relation between Raman frequency and triaxial stress in Si for surface and cross-sectional experiments in microelectronics components. J Appl Phys 2015; 118: 053101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Minamisawa RA, Süess MJ, Spolenak R, et al. Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nat Commun 2012; 3: 1096. [Article] [Google Scholar]
  • Spejo LB, Arrieta-Concha JL, Puydinger dos Santos MV, et al. Non-linear Raman shift-stress behavior in top-down fabricated highly strained silicon nanowires. J Appl Phys 2020; 128: 045704. [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.