Open Access
Review
Issue
Natl Sci Open
Volume 2, Number 3, 2023
Article Number 20220065
Number of page(s) 25
Section Materials Science
DOI https://doi.org/10.1360/nso/20220065
Published online 06 May 2023
  • Yuan S, Feng L, Wang K, et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv Mater 2018; 30: 1704303. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sun F, Chen T, Li Q, et al. Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous Nickel-Zinc battery. J Colloid Interface Sci 2022; 627: 483-491. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • He T, Xu X, Ni B, et al. Metal-organic framework based microcapsules. Angew Chem Int Ed 2018; 57: 10148-10152. [Article] [CrossRef] [Google Scholar]
  • Zhang M, Zhou W, Pham T, et al. Fine tuning of MOF-505 analogues to reduce low-pressure methane uptake and enhance methane working capacity. Angew Chem 2017; 129: 11584-11588. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu C, Bai Y, Li W, et al. In situ growth of three-dimensional mxene/metal-organic framework composites for high-performance supercapacitors. Angew Chem Int Ed 2022; 61: e202116282. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Radwan A, Jin H, He D, et al. Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett 2021; 13: 132. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Xue P, Guo C, Li L, et al. A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv Mater 2022; 34: 2110047. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ren L, Zhu W, Zhang Q, et al. MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem Eng J 2022; 434: 134701. [Article] [Google Scholar]
  • Geng P, Wang L, Du M, et al. MIL-96-Al for Li-S batteries: Shape or size?. Adv Mater 2022; 34: 2107836. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lin RB, Xiang S, Xing H, et al. Exploration of porous metal-organic frameworks for gas separation and purification. Coord Chem Rev 2019; 378: 87-103. [Article] [CrossRef] [Google Scholar]
  • Peng Y, Bai Y, Liu C, et al. Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord Chem Rev 2022; 466: 214602. [Article] [CrossRef] [Google Scholar]
  • Lv J, Wang B, Li JY, et al. Detection of toxic polychlorinated biphenyls by nanoporous metal-organic frameworks. ACS Appl Nano Mater 2022; 5: 11656-11664. [Article] [CrossRef] [Google Scholar]
  • Li Y, Chen Q, Xie LH, et al. Single-phase white-light phosphors based on a bicarbazole-based metal-organic framework with encapsulated dyes. ACS Mater Lett 2022; 4: 2345-2351. [Article] [CrossRef] [Google Scholar]
  • Li Q, Li S, Sha J, et al. NiMo6/ZIF-67 nanostructures on graphitic carbon nitride for colorimetric sensing of hydrogen peroxide and ascorbic acid. ACS Appl Nano Mater 2021; 4: 12197-12203. [Article] [CrossRef] [Google Scholar]
  • Huangfu M, Wang M, Lin C, et al. Luminescent metal-organic frameworks as chemical sensors based on “mechanism-response”: A review. Dalton Trans 2021; 50: 3429-3449. [Article] [Google Scholar]
  • Chen K, Wang XL, Hu W, et al. Modified metal-organic frameworks for electrochemical applications. Small Struct 2022; 3: 2100200. [Article] [CrossRef] [Google Scholar]
  • Zhang M, Shan Y, Kong Q, et al. Applications of metal-organic framework-graphene composite materials in electrochemical energy storage. FlatChem 2022; 32: 100332. [Article] [Google Scholar]
  • Duan H, Zhao Z, Lu J, et al. When conductive MOFs meet MnO2: High electrochemical energy storage performance in an aqueous asymmetric supercapacitor. ACS Appl Mater Interfaces 2021; 13: 33083-33090. [Article] [Google Scholar]
  • Ahmadi A, Sarrafzadeh MH, Hosseinian A, et al. Foulant layer degradation of dye in photocatalytic membrane reactor (PMR) containing immobilized and suspended NH2-MIL125(Ti) MOF led to water flux recovery. J Environ Chem Eng 2022; 10: 106999. [Article] [Google Scholar]
  • Ma X, Xu X, Duan F, et al. High-efficiency wideband excitable mechanoluminescence from a yellow MOF phosphor as white LED and multicolor thin films. Adv Opt Mater 2022; 10: 2101461. [Article] [CrossRef] [Google Scholar]
  • Zheng S, Zhou H, Xue H, et al. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J Colloid Interface Sci 2022; 614: 130-137. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wen T, Quan G, Niu B, et al. Versatile nanoscale metal-organic frameworks (nMOFs): An emerging 3D nanoplatform for drug delivery and therapeutic applications. Small 2021; 17: 2005064. [Article] [CrossRef] [Google Scholar]
  • Bai Y, Liu C, Chen T, et al. Mxene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed 2021; 60: 25318-25322. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li W, Guo X, Geng P, et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv Mater 2021; 33: 2105163. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wei X, Zhao G, Feng P, et al. Core-shell lanthanide-doped nanoparticles@Eu-MOF nanocomposites for anticounterfeiting applications. ACS Appl Nano Mater 2022; 5: 1161-1168. [Article] [CrossRef] [Google Scholar]
  • Hang X, Xue Y, Cheng Y, et al. From Co-MOF to CoNi-MOF to Ni-MOF: A facile synthesis of 1D micro-/nanomaterials. Inorg Chem 2021; 60: 13168-13176. [Article] [Google Scholar]
  • Karamzadeh S, Sanchooli E, Oveisi AR, et al. Visible-LED-light-driven photocatalytic synthesis of N-heterocycles mediated by a polyoxometalate-containing mesoporous zirconium metal-organic framework. Appl Catal B-Environ 2022; 303: 120815. [Article] [CrossRef] [Google Scholar]
  • Zhou H, Cao W, Sun N, et al. Formation mechanism and properties of NiCoFeLDH@ZIF-67 composites. Chin Chem Lett 2021; 32: 3123-3127. [Article] [Google Scholar]
  • Tang Y, Zheng S, Cao S, et al. Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. J Colloid Interface Sci 2022; 626: 1062-1069. [Article] [Google Scholar]
  • Fan H, Peng M, Strauss I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat Commun 2021; 12: 38. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang G, Jin L, Zhang R, et al. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev 2021; 439: 213915. [Article] [CrossRef] [Google Scholar]
  • Wang X, Wang Y, Lu K, et al. A 3D Ba-MOF for selective adsorption of CO2/CH4 and CO2/N2. Chin Chem Lett 2021; 32: 1169-1172. [Article] [CrossRef] [Google Scholar]
  • Geng P, Du M, Wu C, et al. PPy-constructed core-shell structures from MOFs for confining lithium polysulfides. Inorg Chem Front 2022; 9: 2389-2394. [Article] [CrossRef] [Google Scholar]
  • Wang HF, Chen L, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 2020; 49: 1414-1448. [Article] [Google Scholar]
  • Luo HB, Ren Q, Wang P, et al. High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808. ACS Appl Mater Interfaces 2019; 11: 9164-9171. [Article] [Google Scholar]
  • Cheng Y, Xiao X, Guo X, et al. Synthesis of “Quasi-Ce-MOF” electrocatalysts for enhanced urea oxidation reaction performance. ACS Sustain Chem Eng 2020; 8: 8675-8680. [Article] [CrossRef] [Google Scholar]
  • Gkaniatsou E, Sicard C, Ricoux R, et al. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules. Angew Chem 2018; 130: 16373-16378. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ye G, Hu L, Gu Y, et al. Synthesis of polyoxometalate encapsulated in UiO-66(Zr) with hierarchical porosity and double active sites for oxidation desulfurization of fuel oil at room temperature. J Mater Chem A 2020; 8: 19396-19404. [Article] [CrossRef] [Google Scholar]
  • Bu T, Liu X, Zhou Y, et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ Sci 2017; 10: 2509-2515. [Article] [Google Scholar]
  • Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016; 354: 206-209. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang BB, Liu X, Xiao B, et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J Phys Chem Lett 2019; 11: 432-437. [Article] [Google Scholar]
  • Wang Y, Liu Y, Wu Y, et al. Properties and growth of large single crystals of one-dimensional organic lead iodine perovskite. CrystEngComm 2020; 22: 7090-7094. [Article] [CrossRef] [Google Scholar]
  • Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science 2018; 361: eaat8235. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wu T, Qin Z, Wang Y, et al. The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett 2021; 13: 152. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021; 592: 381-385. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lou H, Lin C, Fang Z, et al. Coexistence of light-induced photoluminescence enhancement and quenching in CH3NH3PbBr3 perovskite films. RSC Adv 2020; 10: 11054-11059. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chu L, Zhai S, Ahmad W, et al. High-performance large-area perovskite photovoltaic modules. Nano Res Energy 2022; 1: e9120024. [Article] [CrossRef] [Google Scholar]
  • Xue J, Zhang Z, Zheng F, et al. Efficient solid-state electrochemiluminescence from high-quality perovskite quantum dot films. Anal Chem 2017; 89: 8212-8216. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang F, Zou X, Xu M, et al. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv Sci 2021; 8: 2100569. [Article] [CrossRef] [Google Scholar]
  • Yang Y, Dai H, Yang F, et al. All-perovskite photodetector with fast response. Nanoscale Res Lett 2019; 14: 291. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Jing H, Peng R, Ma RM, et al. Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett 2020; 20: 7144-7151. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhou Y, Qiu X, Wan Z, et al. Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy 2022; 100: 107516. [Article] [CrossRef] [Google Scholar]
  • Schanze KS, Kamat PV, Yang P, et al. Progress in perovskite photocatalysis. ACS Energy Lett 2020; 5: 2602-2604. [Article] [CrossRef] [Google Scholar]
  • Huynh KA, Nguyen DLT, Nguyen VH, et al. Halide perovskite photocatalysis: Progress and perspectives. J Chem Technol Biotechnol 2020; 95: 2579-2596. [Article] [Google Scholar]
  • DuBose JT, Kamat PV. Efficacy of perovskite photocatalysis: Challenges to overcome. ACS Energy Lett 2022; 7: 1994-2011. [Article] [Google Scholar]
  • Wei K, Faraj Y, Yao G, et al. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chem Eng J 2021; 414: 128783. [Article] [Google Scholar]
  • Li X, Zhao H, Liang J, et al. A-site perovskite oxides: An emerging functional material for electrocatalysis and photocatalysis. J Mater Chem A 2021; 9: 6650-6670. [Article] [Google Scholar]
  • Yang X, Gao Y, Ji Z, et al. Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: Synthesis and application for photoelectrochemical sensing of salicylic acid. Anal Chem 2019; 91: 9356-9360. [Article] [Google Scholar]
  • Wang L, Li J, Feng M, et al. Perovskite-type calcium titanate nanoparticles as novel matrix for designing sensitive electrochemical biosensing. Biosens Bioelectron 2017; 96: 220-226. [Article] [Google Scholar]
  • Qin W, Yuan Z, Shen Y, et al. Phosphorus-doped porous perovskite LaFe1−xPxO3−δ nanosheets with rich surface oxygen vacancies for ppb level acetone sensing at low temperature. Chem Eng J 2022; 431: 134280. [Article] [Google Scholar]
  • Zhou Y, Zhao Y. Chemical stability and instability of inorganic halide perovskites. Energy Environ Sci 2019; 12: 1495-1511. [Article] [Google Scholar]
  • Song Z, Zhao J, Liu Q. Luminescent perovskites: Recent advances in theory and experiments. Inorg Chem Front 2019; 6: 2969-3011. [Article] [CrossRef] [Google Scholar]
  • Wei Y, Cheng Z, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev 2019; 48: 310-350. [Article] [Google Scholar]
  • Lv W, Li L, Xu M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv Mater 2019; 31: 1900682. [Article] [CrossRef] [Google Scholar]
  • Wei Y, Deng X, Xie Z, et al. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv Funct Mater 2017; 27: 1703535. [Article] [CrossRef] [Google Scholar]
  • Dirin DN, Protesescu L, Trummer D, et al. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett 2016; 16: 5866-5874. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li Z, Kong L, Huang S, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew Chem Int Ed 2017; 56: 8134-8138. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou X, Qiu L, Fan R, et al. Toward high-efficiency and thermally-stable perovskite solar cells: A novel metal-organic framework with active pyridyl sites replacing 4-tert-butylpyridine. J Power Sources 2020; 473: 228556. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Malkar RS, Yadav GD. Synthesis of cinnamyl benzoate over novel heteropoly acid encapsulated ZIF-8. Appl Catal A-Gen 2018; 560: 54-65. [Article] [CrossRef] [Google Scholar]
  • Kong ZC, Liao JF, Dong YJ, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett 2018; 3: 2656-2662. [Article] [CrossRef] [Google Scholar]
  • Stone AEBS, Irgen-Gioro S, López-Arteaga R, et al. Encapsulating CdSe/CdS QDs in the MOF ZIF-8 enhances their photoluminescence quantum yields in the solid state. Chem Mater 2022; 34: 1921-1929. [Article] [CrossRef] [Google Scholar]
  • Wang X, Ge L, Lu Q, et al. High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. J Power Sources 2020; 468: 228377. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Stassen I, Styles M, Grenci G, et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater 2016; 15: 304-310. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Shi L, Wang J, Zhou L, et al. Facile in-situ preparation of MAPbBr3@UiO-66 composites for information encryption and decryption. J Solid State Chem 2020; 282: 121062. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mollick S, Mandal TN, Jana A, et al. A hybrid blue perovskite@metal-organic gel (MOG) nanocomposite: Simultaneous improvement of luminescence and stability. Chem Sci 2019; 10: 10524-10530. [Article] [Google Scholar]
  • Li Z, Yu C, Wen Y, et al. MOF-confined Sub-2 nm stable CsPbX3 perovskite quantum dots. Nanomaterials 2019; 9: 1147. [Article] [Google Scholar]
  • Lee CC, Chen CI, Liao YT, et al. Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv Sci 2019; 6: 1801715. [Article] [CrossRef] [Google Scholar]
  • Zhang D, Zhao J, Liu Q, et al. Synthesis and luminescence properties of CsPbX3@Uio-67 composites toward stable photoluminescence convertors. Inorg Chem 2019; 58: 1690-1696. [Article] [Google Scholar]
  • Xie Z, Li X, Li R, et al. In situ confined growth of ultrasmall perovskite quantum dots in metal-organic frameworks and their quantum confinement effect. Nanoscale 2020; 12: 17113-17120. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Qiao GY, Guan D, Yuan S, et al. Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials. J Am Chem Soc 2021; 143: 14253-14260. [Article] [Google Scholar]
  • Wu H, Yao L, Cao W, et al. Stable and wide-wavelength tunable luminescence of CsPbX3 nanocrystals encapsulated in metal-organic frameworks. J Mater Chem C 2022; 10: 5550-5558. [Article] [CrossRef] [Google Scholar]
  • Fang X, Ye J, Duan D, et al. Aspartic acid assisted one-step synthesis of stable CsPbX3@Asp-Cs4PbX6 by in situ growth in NH2-MIL-53 for ratiometric fluorescence detection of 4-bromophenoxybenzene. Microchim Acta 2021; 188: 204. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ren J, Li T, Zhou X, et al. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem Eng J 2019; 358: 30-39. [Article] [Google Scholar]
  • Bhattacharyya S, Rambabu D, Maji TK. Mechanochemical synthesis of a processable halide perovskite quantum dot-MOF composite by post-synthetic metalation. J Mater Chem A 2019; 7: 21106-21111. [Article] [CrossRef] [Google Scholar]
  • Tsai H, Shrestha S, Vilá RA, et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks. Nat Photon 2021; 15: 843-849. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Tsai H, Huang HH, Watt J, et al. Cesium lead halide perovskite nanocrystals assembled in metal-organic frameworks for stable blue light emitting diodes. Adv Sci 2022; 9: 2105850. [Article] [CrossRef] [Google Scholar]
  • Zhu R, Ding J, Jin L, et al. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev 2019; 389: 119-140. [Article] [CrossRef] [Google Scholar]
  • Markwell-Heys AW, Roemelt M, Slattery AD, et al. Linking metal-organic cages pairwise as a design approach for assembling multivariate crystalline materials. Chem Sci 2022; 13: 68-73. [Article] [Google Scholar]
  • Wu T, Liu X, Liu Y, et al. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coord Chem Rev 2020; 403: 213097. [Article] [CrossRef] [Google Scholar]
  • Xu B, Gao Z, Yang S, et al. Multicolor random lasers based on perovskite quantum dots embedded in intrinsic Pb-MOFs. J Phys Chem C 2021; 125: 25757-25764. [Article] [Google Scholar]
  • Ren C, Li Z, Huang L, et al. Confinement of all-inorganic perovskite quantum dots assembled in metal-organic frameworks for ultrafast scintillator application. Nanoscale 2022; 14: 4216-4224. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Laha S, Rambabu D, Bhattacharyya S, et al. Modulating hierarchical micro/mesoporosity by a mixed solvent approach in Al-MOF: Stabilization of MAPbBr3 quantum dots. Chem Eur J 2020; 26: 14671-14678. [Article] [Google Scholar]
  • Cuan J, Zhang D, Xing W, et al. Confining CsPbX3 perovskites in a hierarchically porous MOF as efficient and stable phosphors for white LED. Chem Eng J 2021; 425: 131556. [Article] [Google Scholar]
  • Zhang X, He M, Fang H, et al. Additional electron transfer channels of thermostable 0D Cs(Pb:Pt)Br3 perovskite quantum dots/2D accordion-like Ni-MOF nanojunction for photocatalytic H2 evolution. Int J Hydrogen Energy 2022; 47: 40860-40871. [Article] [Google Scholar]
  • Zhang C, Li W, Li L. Metal halide perovskite nanocrystals in metal-organic framework host: Not merely enhanced stability. Angew Chem Int Ed 2021; 60: 7488-7501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Mollick S, Mandal TN, Jana A, et al. Ultrastable luminescent hybrid bromide perovskite@MOF nanocomposites for the degradation of organic pollutants in water. ACS Appl Nano Mater 2019; 2: 1333-1340. [Article] [Google Scholar]
  • Aijaz A, Xu Q. Catalysis with metal nanoparticles immobilized within the pores of metal-organic frameworks. J Phys Chem Lett 2014; 5: 1400-1411. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hermes S, Schröter MK, Schmid R, et al. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed 2005; 44: 6237-6241. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tai Q, Cao J, Wang T, et al. Recent advances toward efficient and stable tin-based perovskite solar cells. EcoMat 2019; 1: e12004. [Article] [Google Scholar]
  • Zhang Z, Liang Y, Huang H, et al. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew Chem Int Ed 2019; 58: 7263-7267. [Article] [CrossRef] [PubMed] [Google Scholar]
  • He T, Jiang Y, Xing X, et al. Structured perovskite light absorbers for efficient and stable photovoltaics. Adv Mater 2020; 32: 1903937. [Article] [CrossRef] [Google Scholar]
  • Tang Y, Wang P, Wang R, et al. MOF-triggered formation of MAPbBr3@PbBr(OH) with enhanced stability. J Mater Chem C 2022; 10: 616-625. [Article] [Google Scholar]
  • He H, Cui Y, Li B, et al. Confinement of perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence. Adv Mater 2019; 31: 1806897. [Article] [CrossRef] [Google Scholar]
  • Luo J, Zhang W, Yang H, et al. Halide perovskite composites for photocatalysis: A mini review. EcoMat 2021; 3: e12079. [Article] [Google Scholar]
  • Mu YF, Zhang W, Guo XX, et al. Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO2 reduction in pure water. ChemSusChem 2019; 12: 4769-4774. [Article] [Google Scholar]
  • Wu LY, Mu YF, Guo XX, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Ed 2019; 58: 9491-9495. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu J, Zhao Y, Li X, et al. Dual-emissive CsPbBr3@Eu-BTC composite for self-calibrating temperature sensing application. Cryst Growth Des 2020; 20: 454-459. [Article] [Google Scholar]
  • Wan S, Ou M, Zhong Q, et al. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem Eng J 2019; 358: 1287-1295. [Article] [Google Scholar]
  • Chen ZY, Hong QL, Zhang HX, et al. Composite of CsPbBr3 with boron imidazolate frameworks as an efficient visible-light photocatalyst for CO2 reduction. ACS Appl Energy Mater 2021; 5: 1175-1182. [Article] [Google Scholar]
  • Wang YY, Ji XY, Yu M, et al. Confining lead-free perovskite quantum dots in metal-organic frameworks for visible light-driven proton reduction. Mater Chem Front 2021; 5: 7796-7807. [Article] [CrossRef] [Google Scholar]
  • Zhao Y, Xie C, Zhang X, et al. CsPbX3 quantum dots embedded in zeolitic imidazolate framework-8 microparticles for bright white light-emitting devices. ACS Appl Nano Mater 2021; 4: 5478-5485. [Article] [Google Scholar]
  • Chen C, Nie L, Huang Y, et al. Embedded growth of colorful CsPbX3 (X = Cl, Br, I) nanocrystals in metal-organic frameworks at room temperature. Nanotechnology 2022; 33: 175603. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang C, Wang B, Li W, et al. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat Commun 2017; 8: 1138. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ren J, Zhou X, Wang Y. Dual-emitting CsPbX3@ZJU-28 (X = Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications. Chem Eng J 2020; 391: 123622. [Article] [CrossRef] [Google Scholar]
  • Zhang C, Li ZS, Dong XY, et al. Multiple responsive CPL switches in an enantiomeric pair of perovskite confined in lanthanide MOFs. Adv Mater 2022; 34: 2109496. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cha JH, Noh K, Yin W, et al. Formation and encapsulation of all-inorganic lead halide perovskites at room temperature in metal-organic frameworks. J Phys Chem Lett 2019; 10: 2270-2277. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Protesescu L, Calbo J, Williams K, et al. Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites. Chem Sci 2021; 12: 6129-6135. [Article] [Google Scholar]
  • Liu T, He J, Lu Z, et al. A visual electrochemiluminescence molecularly imprinted sensor with Ag+@UiO-66-NH2 decorated CsPbBr3 perovskite based on smartphone for point-of-care detection of nitrofurazone. Chem Eng J 2022; 429: 132462. [Article] [Google Scholar]
  • Shu Y, Ye Q, Dai T, et al. Incorporation of perovskite nanocrystals into lanthanide metal-organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution. J Hazard Mater 2022; 430: 128360. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang D, Xu Y, Liu Q, et al. Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection. Inorg Chem 2018; 57: 4613-4619. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Gong YN, Jiao L, Qian Y, et al. Regulating the coordination environment of mof-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew Chem 2020; 132: 2727-2731. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Dong WW, Jia J, Wang Y, et al. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity. Chem Eng J 2022; 438: 135622. [Article] [Google Scholar]
  • Li Q, Gao Y, Zhang M, et al. Efficient infrared-light-driven photothermal CO2 reduction over MOF-derived defective Ni/TiO2. Appl Catal B-Environ 2022; 303: 120905. [Article] [CrossRef] [Google Scholar]
  • Zhang Z, Yao ZZ, Xiang S, et al. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy Environ Sci 2014; 7: 2868-2899. [Article] [Google Scholar]
  • Qin L, Zheng QM, Liu JL, et al. A novel and efficient method of MOF-derived electrocatalyst for HER performance through doping organic ligands. Mater Chem Front 2021; 5: 7833-7842. [Article] [Google Scholar]
  • Zhang Y, Hu W, Wang D, et al. Electron shuttle in the MOF derived TiO2/CuO heterojunction boosts light driven hydrogen evolution. J Mater Chem A 2021; 9: 6180-6187. [Article] [CrossRef] [Google Scholar]
  • Cruz del Álamo A, Zou R, Pariente MI, et al. Catalytic activity of LaCu0.5Mn0.5O3 perovskite at circumneutral/basic pH conditions in electro-Fenton processes. Catal Today 2021; 361: 159-164. [Article] [Google Scholar]
  • Li Z, Li JG, Ao X, et al. Conductive metal-organic frameworks endow high-efficient oxygen evolution of La0.6Sr0.4Co0.8Fe0.2O3 perovskite oxide nanofibers. Electrochim Acta 2020; 334: 135638. [Article] [CrossRef] [Google Scholar]
  • Pacchioni G. Highly efficient perovskite LEDs. Nat Rev Mater 2021; 6: 108. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang K, Zhu N, Zhang M, et al. Opportunities and challenges in perovskite LED commercialization. J Mater Chem C 2021; 9: 3795-3799. [Article] [CrossRef] [Google Scholar]
  • Kong L, Zhang X, Zhang C, et al. Stability of perovskite light-emitting diodes: Existing issues and mitigation strategies related to both material and device aspects. Adv Mater 2022; 34: 2205217. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hou J, Chen P, Shukla A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 2021; 374: 621-625. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang Z, Zhang Y, Liu X, et al. High stability and strong luminescence CsPbBr3/Cs4PbBr6 perovskite nanocomposite: Large-scale synthesis, reversible luminescence, and anti-counterfeiting application. Adv Mater Technol 2021; 6: 2100654. [Article] [CrossRef] [Google Scholar]
  • Xu L, Chen J, Song J, et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes. ACS Appl Mater Interfaces 2017; 9: 26556-26564. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang D, Zhou W, Liu Q, et al. CH3NH3PbBr3 perovskite nanocrystals encapsulated in lanthanide metal-organic frameworks as a photoluminescence converter for anti-counterfeiting. ACS Appl Mater Interfaces 2018; 10: 27875-27884. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Qian X, An X. Introducing lanthanide metal-organic framework and perovskite onto pulp fibers for fluorescent anti-counterfeiting and encryption. Cellulose 2022; 29: 1115-1127. [Article] [Google Scholar]
  • Dun GH, Zhang H, Qin K, et al. Wafer-scale photolithography-pixeled Pb-free perovskite X-ray detectors. ACS Nano 2022; 16: 10199-10208. [Article] [Google Scholar]
  • Walsh KM, Pressler K, Crane MJ, et al. Ferromagnetism and spin-polarized luminescence in lead-free CsEuCl3 perovskite nanocrystals and thin films. ACS Nano 2022; 16: 2569-2576. [Article] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.