Open Access
Issue |
Natl Sci Open
Volume 2, Number 3, 2023
Special Topic: Glasses—Materials and Physics
|
|
---|---|---|
Article Number | 20220069 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1360/nso/20220069 | |
Published online | 28 April 2023 |
- Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Rev Mod Phys 1996; 68: 1259–1273. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Forterre Y, Pouliquen O. Flows of dense granular media. Annu Rev Fluid Mech 2008; 40: 1–24. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Andreotti B, Forterre Y, Pouliquen O. Granular Media: Between Fluid and Solid. Cambridge: Cambridge University Press, 2013. [CrossRef] [Google Scholar]
- Kou B, Cao Y, Li J, et al. Granular materials flow like complex fluids. Nature 2017; 551: 360–363. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Phys Rev A 1988; 38: 364–374. [Article] [Google Scholar]
- Turcotte DL. Self-organized criticality. Rep Prog Phys 1999; 62: 1377–1429. [Article] [CrossRef] [Google Scholar]
- Frette V, Christensen K, Malthe-Sørenssen A, et al. Avalanche dynamics in a pile of rice. Nature 1996; 379: 49–52. [Article] [CrossRef] [Google Scholar]
- Ramos O, Altshuler E, Måløy KJ. Avalanche prediction in a self-organized pile of beads. Phys Rev Lett 2009; 102: 078701. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jaeger HM, Liu CH, Nagel SR. Relaxation at the angle of repose. Phys Rev Lett 1989; 62: 40–43. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fischer R, Gondret P, Perrin B, et al. Dynamics of dry granular avalanches. Phys Rev E 2008; 78: 021302. [Article] [CrossRef] [PubMed] [Google Scholar]
- Balmforth NJ, McElwaine JN. From episodic avalanching to continuous flow in a granular drum. Granul Matter 2018; 20: 52. [Article] [Google Scholar]
- Bagnold RA. The shearing and dilatation of dry sand and the “singing" mechanism. Proc Royal Soc London Ser A Math Phys Sci 1966; 295: 219. [NASA ADS] [Google Scholar]
- Carrigy MA. Experiments on the angles of repose of granular materials. Sedimentology 1970; 14: 147–158. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Nagel SR. Instabilities in a sandpile. Rev Mod Phys 1992; 64: 321–325. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jaeger HM, Liu CH, Nagel SR, et al. Friction in granular flows. Europhys Lett 1990; 11: 619–624. [Article] [CrossRef] [Google Scholar]
- Bouchaud JP, Cates ME, Prakash JR, et al. Hysteresis and metastability in a continuum sandpile model. Phys Rev Lett 1995; 74: 1982–1985. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Baumberger T, Caroli C. Solid friction from stick-slip down to pinning and aging. Adv Phys 2006; 55: 279–348. [Article] [CrossRef] [Google Scholar]
- Jerolmack DJ, Daniels KE. Viewing Earth's surface as a soft-matter landscape. Nat Rev Phys 2019; 1: 716–730. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Nicolas A, Ferrero EE, Martens K, et al. Deformation and flow of amorphous solids: Insights from elastoplastic models. Rev Mod Phys 2018; 90: 045006. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Dahmen KA, Ben-Zion Y, Uhl JT. A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat Phys 2011; 7: 554–557. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu XY, Specht E, Mellmann J. Experimental study of the lower and upper angles of repose of granular materials in rotating drums. Powder Tech 2005; 154: 125–131. [Article] [CrossRef] [Google Scholar]
- Gray JMNT. Particle segregation in dense granular flows. Annu Rev Fluid Mech 2018; 50: 407–433. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Peyneau PE, Roux JN. Frictionless bead packs have macroscopic friction, but no dilatancy. Phys Rev E 2008; 78: 011307. [Article] [CrossRef] [PubMed] [Google Scholar]
- DeGiuli E, Wyart M. Friction law and hysteresis in granular materials. Proc Natl Acad Sci USA 2017; 114: 9284–9289. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Perrin H, Clavaud C, Wyart M, et al. Interparticle friction leads to nonmonotonic flow curves and hysteresis in viscous suspensions. Phys Rev X 2019; 9: 031027. [Article] [NASA ADS] [Google Scholar]
- Yuan Y, Xing Y, Zheng J, et al. Experimental test of the edwards volume ensemble for tapped granular packings. Phys Rev Lett 2021; 127: 018002. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zeng Z, Zhang S, Zheng X, et al. Equivalence of fluctuation-dissipation and Edwards’ temperature in cyclically sheared granular systems. Phys Rev Lett 2022; 129: 228004. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rajchenbach J. Flow in powders: From discrete avalanches to continuous regime. Phys Rev Lett 1990; 65: 2221–2224. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lemieux PA, Durian DJ. From avalanches to fluid flow: a continuous picture of grain dynamics down a heap. Phys Rev Lett 2000; 85: 4273–4276. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fischer R, Gondret P, Rabaud M. Transition by intermittency in granular matter: from discontinuous avalanches to continuous flow. Phys Rev Lett 2009; 103: 128002. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Börzsönyi T, Halsey TC, Ecke RE. Avalanche dynamics on a rough inclined plane. Phys Rev E 2008; 78: 011306. [Article] [CrossRef] [PubMed] [Google Scholar]
- Evesque P, Rajchenbach J. Instability in a sand heap. Phys Rev Lett 1989; 62: 44–46. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.