Open Access
Review
Issue |
Natl Sci Open
Volume 2, Number 6, 2023
|
|
---|---|---|
Article Number | 20220053 | |
Number of page(s) | 23 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20220053 | |
Published online | 03 July 2023 |
- Cabeza-Cabrerizo M, Cardoso A, Minutti CM, et al. Dendritic cells revisited. Annu Rev Immunol 2021; 39: 131-166. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anderson Iii DA, Dutertre CA, Ginhoux F, et al. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 2021; 21: 101-115. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yin X, Chen S, Eisenbarth SC. Dendritic cell regulation of T helper cells. Annu Rev Immunol 2021; 39: 759-790. [Article] [CrossRef] [PubMed] [Google Scholar]
- Villar J, Segura E. Decoding the heterogeneity of human dendritic cell subsets. Trends Immunol 2020; 41: 1062-1071. [Article] [CrossRef] [PubMed] [Google Scholar]
- Steinman RM. Decisions about dendritic cells: Past, present, and future. Annu Rev Immunol 2012; 30: 1-22. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hammer GE, Ma A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol 2013; 31: 743-791. [Article] [CrossRef] [PubMed] [Google Scholar]
- Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015; 15: 203-216. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17: 587–599 [CrossRef] [PubMed] [Google Scholar]
- Ganguly D, Haak S, Sisirak V, et al. The role of dendritic cells in autoimmunity. Nat Rev Immunol 2013; 13: 566-577. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Chu J, Yu J, et al. Cellular and molecular mechanisms in graft-versus-host disease. J Leukoc Biol 2016; 99: 279-287. [Article] [CrossRef] [PubMed] [Google Scholar]
- Murphy TL, Grajales-Reyes GE, Wu X, et al. Transcriptional control of dendritic cell development. Annu Rev Immunol 2016; 34: 93-119. [Article] [CrossRef] [PubMed] [Google Scholar]
- Durai V, Murphy KM. Functions of murine dendritic cells. Immunity 2016; 45: 719-736. [Article] [CrossRef] [PubMed] [Google Scholar]
- Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol 2019; 19: 89-103. [Article] [CrossRef] [PubMed] [Google Scholar]
- Izumi G, Nakano H, Nakano K, et al. CD11b+ lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nat Commun 2021; 12: 5029. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gargaro M, Scalisi G, Manni G, et al. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity 2022; 55: 1032-1050.e14. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ardouin L, Luche H, Chelbi R, et al. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 2016; 45: 305-318. [Article] [CrossRef] [PubMed] [Google Scholar]
- Barroso A, Mahler JV, Fonseca-Castro PH, et al. Therapeutic induction of tolerogenic dendritic cells via aryl hydrocarbon receptor signaling. Curr Opin Immunol 2021; 70: 33-39. [Article] [CrossRef] [PubMed] [Google Scholar]
- Eickhoff S, Brewitz A, Gerner MY, et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 2015; 162: 1322-1337. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hor JL, Whitney PG, Zaid A, et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 2015; 43: 554-565. [Article] [CrossRef] [PubMed] [Google Scholar]
- Alcaraz-Serna A, Bustos-Morán E, Fernández-Delgado I, et al. Immune synapse instructs epigenomic and transcriptomic functional reprogramming in dendritic cells. Sci Adv 2021; 7: eabb9965. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu R, Murphy KM. DCs at the center of help: Origins and evolution of the three-cell-type hypothesis. J Exp Med 2022; 219: e20211519 [CrossRef] [PubMed] [Google Scholar]
- Ferris ST, Durai V, Wu R, et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 2020; 584: 624-629. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schaupp L, Muth S, Rogell L, et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 2020; 181: 1080-1096.e19. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhivaki D, Kagan JC. NLRP3 inflammasomes that induce antitumor immunity. Trends Immunol 2021; 42: 575-589. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhivaki D, Kagan JC. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat Rev Immunol 2022; 22: 322-330. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhivaki D, Borriello F, Chow OA, et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep 2020; 33: 108381. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee PH, Yamamoto TN, Gurusamy D, et al. Host conditioning with IL-1β improves the antitumor function of adoptively transferred T cells. J Exp Med 2019; 216: 2619-2634. [Article] [CrossRef] [PubMed] [Google Scholar]
- North RJ, Neubauer RH, Huang JJ, et al. Interleukin 1-induced, T cell-mediated regression of immunogenic murine tumors. Requirement for an adequate level of already acquired host concomitant immunity. J Exp Med 1988; 168: 2031-2043. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dixit A, Parnas O, Li B, et al. Perturb-Seq: Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 2016; 167: 1853-1866.e17. [Article] [Google Scholar]
- Grandclaudon M, Perrot-Dockès M, Trichot C, et al. A quantitative multivariate model of human dendritic cell-T helper cell communication. Cell 2019; 179: 432-447.e21. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hoffmann C, Noel F, Grandclaudon M, et al. PD-L1 and ICOSL discriminate human secretory and helper dendritic cells in cancer, allergy and autoimmunity. Nat Commun 2022; 13: 1983. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hilligan KL, Tang SC, Hyde EJ, et al. Dermal IRF4+ dendritic cells and monocytes license CD4+ T helper cells to distinct cytokine profiles. Nat Commun 2020; 11: 5637. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kvedaraite E, Ginhoux F. Human dendritic cells in cancer. Sci Immunol 2022; 7: eabm9409. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Chopin M, Nutt SL. Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 2021; 42: 1113-1127. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021; 21: 298-312. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ghislat G, Cheema AS, Baudoin E, et al. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci Immunol 2021; 6: eabg3570. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ruhland MK, Roberts EW, Cai E, et al. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 2020; 37: 786-799.e5. [Article] [CrossRef] [PubMed] [Google Scholar]
- Duong E, Fessenden TB, Lutz E, et al. Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity 2022; 55: 308-323.e9. [Article] [CrossRef] [PubMed] [Google Scholar]
- Roberts EW, Broz ML, Binnewies M, et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016; 30: 324-336. [Article] [CrossRef] [PubMed] [Google Scholar]
- Menares E, Gálvez-Cancino F, Cáceres-Morgado P, et al. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat Commun 2019; 10: 4401. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- van den Hout MFCM, Koster BD, Sluijter BJR, et al. Melanoma sequentially suppresses different DC subsets in the sentinel lymph node, affecting disease spread and recurrence. Cancer Immunol Res 2017; 5: 969-977. [Article] [CrossRef] [PubMed] [Google Scholar]
- Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 2020; 20: 697-709. [Article] [CrossRef] [PubMed] [Google Scholar]
- Melaiu O, Chierici M, Lucarini V, et al. Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma. Nat Commun 2020; 11: 5992. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res 2019; 7: 737-750. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J Exp Med 2011; 208: 2005-2016. [Article] [CrossRef] [PubMed] [Google Scholar]
- Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014; 41: 830-842. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi YY, Zheng WX, Yang KT, et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling.J Exper Med 2020; 217: e20192282 [CrossRef] [PubMed] [Google Scholar]
- McWhirter SM, Jefferies CA. Nucleic acid sensors as therapeutic targets for human disease. Immunity 2020; 53: 78-97. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nicolai CJ, Wolf N, Chang IC, et al. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci Immunol 2020; 5: eaaz2738 [CrossRef] [PubMed] [Google Scholar]
- Xu MM, Pu Y, Han D, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 2017; 47: 363-373.e5. [Article] [CrossRef] [PubMed] [Google Scholar]
- de Mingo Pulido Á, Hänggi K, Celias DP, et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 2021; 54: 1154-1167.e7. [Article] [CrossRef] [PubMed] [Google Scholar]
- He M, Soni B, Schwalie PC, et al. Combinations of Toll-like receptor 8 agonist TL8-506 activate human tumor-derived dendritic cells. J Immunother Cancer 2022; 10: e004268 [CrossRef] [MathSciNet] [Google Scholar]
- Hubert M, Gobbini E, Couillault C, et al. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci Immunol 2020; 5: eaav3942. [Article] [CrossRef] [PubMed] [Google Scholar]
- Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 2020; 17: 251-266. [Article] [CrossRef] [PubMed] [Google Scholar]
- Salmon H, Idoyaga J, Rahman A, et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 2016; 44: 924-938. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hammerich L, Marron TU, Upadhyay R, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med 2019; 25: 814-824. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179: 829-845.e20. [Article] [CrossRef] [PubMed] [Google Scholar]
- Maier B, Leader AM, Chen ST, et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 2020; 580: 257-262. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 2019; 50: 1317-1334.e10. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gerhard GM, Bill R, Messemaker M, et al. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. J Exp Med 2021; 218: e20200264. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cheng S, Li Z, Gao R, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 2021; 184: 792-809.e23. [Article] [CrossRef] [PubMed] [Google Scholar]
- Combes AJ, Samad B, Tsui J, et al. Discovering dominant tumor immune archetypes in a pan-cancer census. Cell 2022; 185: 184-203.e19. [Article] [CrossRef] [PubMed] [Google Scholar]
- Smalley I, Chen Z, Phadke M, et al. Single-cell characterization of the immune microenvironment of melanoma brain and leptomeningeal metastases. Clin Cancer Res 2021; 27: 4109-4125. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ji AL, Rubin AJ, Thrane K, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma (vol 182, pg 497, 2020). Cell 2020; 182: 1661–1662 [CrossRef] [PubMed] [Google Scholar]
- Leruste A, Tosello J, Ramos RN, et al. Clonally expanded T cells reveal immunogenicity of rhabdoid tumors. Cancer Cell 2019; 36: 597-612.e8. [Article] [CrossRef] [PubMed] [Google Scholar]
- Steele NG, Carpenter ES, Kemp SB, et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer 2020; 1: 1097-1112. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hornburg M, Desbois M, Lu S, et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 2021; 39: 928-944.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cohen M, Giladi A, Barboy O, et al. The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat Cancer 2022; 3: 303-317. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu FY, Fan J, He YY, et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun 2021; 12: 2540 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Leader AM, Grout JA, Maier BB, et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 2021; 39: 1594-1609.e12. [Article] [CrossRef] [PubMed] [Google Scholar]
- Peng WS, Zhou X, Yan WB, et al. Dissecting the heterogeneity of the microenvironment in primary and recurrent nasopharyngeal carcinomas using single-cell RNA sequencing. OncoImmunology 2022; 11: 2026583. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen YP, Yin JH, Li WF, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res 2020; 30: 1024-1042. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, He S, Wang XL, et al. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat Commun 2021; 12: 741 [CrossRef] [PubMed] [Google Scholar]
- Sun Y, Wu L, Zhong Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 2021; 184: 404-421.e16. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mair F, Erickson JR, Frutoso M, et al. Extricating human tumour immune alterations from tissue inflammation. Nature 2022; 605: 728-735. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cillo AR, Kürten CHL, Tabib T, et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 2020; 52: 183-199.e9. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zheng Y, Chen Z, Han Y, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nat Commun 2020; 11: 6268. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dinh HQ, Pan F, Wang G, et al. Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment. Nat Commun 2021; 12: 7335. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Zhang Q, Xing B, et al. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell 2022; 40: 424-437.e5. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Li Z, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 2020; 181: 442-459.e29. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet 2021; 53: 1334-1347. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med 2021; 27: 820-832. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Chen H, Mo H, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 2021; 39: 1578-1593.e8. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Zhou L, Liu L, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun 2020; 11: 5077. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zhou Y, Yang D, Yang Q, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun 2020; 11: 6322. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tan Y, Flynn WF, Sivajothi S, et al. Single-cell analysis of endometriosis reveals a coordinated transcriptional programme driving immunotolerance and angiogenesis across eutopic and ectopic tissues. Nat Cell Biol 2022; 24: 1306-1318. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Wang H, Taylor M, et al. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci Immunol 2022; 7: eabl9165. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hildreth AD, Ma F, Wong YY, et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol 2021; 22: 639-653. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mulder K, Patel AA, Kong WT, et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 2021; 54: 1883-1900.e5. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nakamizo S, Dutertre CA, Khalilnezhad A, et al. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J Exp Med 2021; 218: e20202345. [Article] [CrossRef] [PubMed] [Google Scholar]
- Reynolds G, Vegh P, Fletcher J, et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 2021; 371: 364. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Park JE, Botting RA, Conde CD, et al. A cell atlas of human thymic development defines t cell repertoire formation. Science 2020; 367: 868 [NASA ADS] [Google Scholar]
- Dutertre CA, Becht E, Irac SE, et al. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 2019; 51: 573-589.e8. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cytlak U, Resteu A, Pagan S, et al. Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans. Immunity 2020; 53: 353-370.e8. [Article] [CrossRef] [PubMed] [Google Scholar]
- Di Pilato M, Kfuri-Rubens R, Pruessmann JN, et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 2021; 184: 4512-4530.e22. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kreatsoulas D, Bolyard C, Wu BX, et al. Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol 2022; 15: 80. [Article] [CrossRef] [PubMed] [Google Scholar]
- Peng Q, Qiu X, Zhang Z, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun 2020; 11: 4835. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dähling S, Mansilla AM, Knöpper K, et al. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 2022; 55: 656-670.e8. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schenkel JM, Herbst RH, Canner D, et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 2021; 54: 2338-2353.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sautès-Fridman C, Petitprez F, Calderaro J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 2019; 19: 307-325. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 2020; 20: 662-680. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bai X, Zhou Y, Yokota Y, et al. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. J Exp Clin Cancer Res 2022; 41: 132. [Article] [CrossRef] [PubMed] [Google Scholar]
- Vuong L, Kotecha RR, Voss MH, et al. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer Discov 2019; 9: 1349-1357. [Article] [CrossRef] [PubMed] [Google Scholar]
- Giraldo NA, Becht E, Pagès F, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res 2015; 21: 3031-3040. [Article] [CrossRef] [PubMed] [Google Scholar]
- van Hooren L, Vaccaro A, Ramachandran M, et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat Commun 2021; 12: 4127. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chelvanambi M, Fecek RJ, Taylor JL, et al. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J Immunother Cancer 2021; 9: e001906. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fridman WH, Meylan M, Petitprez F, et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19: 441-457. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kalergis AM, Ravetch JV. Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J Exp Med 2002; 195: 1653-1659. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dieu-Nosjean MC, Antoine M, Danel C, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008; 26: 4410-4417. [Article] [CrossRef] [PubMed] [Google Scholar]
- Clark DJ, Dhanasekaran SM, Petralia F, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 2019; 179: 964-983.e31. [Article] [CrossRef] [PubMed] [Google Scholar]
- Meyer MA, Baer JM, Knolhoff BL, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun 2018; 9: 1250. [Article] [CrossRef] [PubMed] [Google Scholar]
- Devalaraja S, To TKJ, Folkert IW, et al. Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression. Cell 2020; 180: 1098-1114.e16. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hegde S, Krisnawan VE, Herzog BH, et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 2020; 37: 289-307.e9. [Article] [Google Scholar]
- Medina BD, Liu M, Vitiello GA, et al. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J Exp Med 2019; 216: 1359-1376. [Article] [CrossRef] [PubMed] [Google Scholar]
- Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic cell metabolism and function in tumors. Trends Immunol 2019; 40: 699-718. [Article] [CrossRef] [PubMed] [Google Scholar]
- Böttcher JP, Bonavita E, Chakravarty P, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 2018; 172: 1022-1037.e14. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hayashi K, Nikolos F, Lee YC, et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat Commun 2020; 11: 6299. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bai X, Wong CC, Pan Y, et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J Immunother Cancer 2022; 10: e003663. [Article] [CrossRef] [PubMed] [Google Scholar]
- Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 2019; 566: 270-274. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18: 197-218. [Article] [CrossRef] [PubMed] [Google Scholar]
- Munson PV, Adamik J, Butterfield LH. Immunomodulatory impact of α-fetoprotein. Trends Immunol 2022; 43: 438-448. [Article] [CrossRef] [PubMed] [Google Scholar]
- Moller SH, Wang LM, Ho PC. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol Immuno 2022; 19: 370–383 [CrossRef] [PubMed] [Google Scholar]
- Colgan SP, Furuta GT, Taylor CT. Hypoxia and innate immunity: Keeping up with the HIFsters. Annu Rev Immunol 2020; 38: 341-363. [Article] [CrossRef] [PubMed] [Google Scholar]
- Suthen S, Lim CJ, Nguyen PHD, et al. Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC. Hepatology 2022; 76: 1329-1344. [Article] [CrossRef] [PubMed] [Google Scholar]
- McGettrick AF, O’Neill LAJ. The role of HIF in immunity and inflammation. Cell Metab 2020; 32: 524-536. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song M, Cubillos-Ruiz JR. Endoplasmic reticulum stress responses in intratumoral immune cells: implications for cancer immunotherapy. Trends Immunol 2019; 40: 128-141. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res 2019; 79: 4557-4566. [Article] [CrossRef] [Google Scholar]
- Allard B, Allard D, Buisseret L, et al. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 2020; 17: 611-629. [Article] [CrossRef] [PubMed] [Google Scholar]
- Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 2019; 19: 405-414. [Article] [CrossRef] [PubMed] [Google Scholar]
- Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat Rev Immunol 2020; 20: 483-497. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell 2020; 78: 1019-1033. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yuan X, Duan Y, Xiao Y, et al. Vitamin E enhances cancer immunotherapy by reinvigorating dendritic cells via targeting checkpoint SHP1. Cancer Discov 2022; 12: 1742-1759. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Uribe-Herranz M, Rafail S, Beghi S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J Clin Invest 2020; 130: 466-479. [Article] [CrossRef] [Google Scholar]
- Huang TX, Tan XY, Huang HS, et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut 2022; 71: 333-344. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ebina-Shibuya R, Leonard WJ. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol, 2023; 23: 24–37 [CrossRef] [PubMed] [Google Scholar]
- Santana-Magal N, Farhat-Younis L, Gutwillig A, et al. Melanoma-secreted lysosomes trigger monocyte-derived dendritic cell apoptosis and limit cancer immunotherapy. Cancer Res 2020; 80: 1942-1956. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity 2021; 54: 859-874. [Article] [CrossRef] [PubMed] [Google Scholar]
- Barry KC, Hsu J, Broz ML, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 2018; 24: 1178-1191. [Article] [CrossRef] [PubMed] [Google Scholar]
- Binnewies M, Mujal AM, Pollack JL, et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 2019; 177: 556-571.e16. [Article] [CrossRef] [PubMed] [Google Scholar]
- Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019; 50: 924-940. [Article] [CrossRef] [PubMed] [Google Scholar]
- Marangoni F, Zhakyp A, Corsini M, et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 2021; 184: 3998-4015.e19. [Article] [CrossRef] [PubMed] [Google Scholar]
- Leinwand J, Miller G. Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 2020; 21: 1152-1159. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bullock TNJ. CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell Mol Immunol 2022; 19: 14-22. [Article] [CrossRef] [PubMed] [Google Scholar]
- Garris CS, Wong JL, Ravetch JV, et al. Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer. Sci Transl Med 2021; 13: eabd1346. [Article] [CrossRef] [PubMed] [Google Scholar]
- Burrack AL, Schmiechen ZC, Patterson MT, et al. Distinct myeloid antigen-presenting cells dictate differential fates of tumor-specific CD8+ T cells in pancreatic cancer. JCI Insight 2022; 7: e151593. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dammeijer F, van Gulijk M, Mulder EE, et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 2020; 38: 685-700.e8. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nirmal AJ, Maliga Z, Vallius T, et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov 2022; 12: 1518-1541. [Article] [CrossRef] [PubMed] [Google Scholar]
- Oh SA, Wu DC, Cheung J, et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat Cancer 2020; 1: 681-691. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Lee CK, Lin CH, et al. PD-L1:CD80 cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity 2019; 51: 1059-1073.e9. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mayoux M, Roller A, Pulko V, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med 2020; 12: eaav7431. [Article] [CrossRef] [PubMed] [Google Scholar]
- Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020; 367: 525. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Garris CS, Arlauckas SP, Kohler RH, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 2018; 49: 1148-1161.e7. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chow MT, Ozga AJ, Servis RL, et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 2019; 50: 1498-1512.e5. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen L, Sun R, Xu J, et al. Tumor-derived IL33 promotes tissue-resident CD8+ T cells and is required for checkpoint blockade tumor immunotherapy. Cancer Immunol Res 2020; 8: 1381-1392. [Article] [CrossRef] [PubMed] [Google Scholar]
- de Mingo Pulido Á, Gardner A, Hiebler S, et al. TIM-3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer. Cancer Cell 2018; 33: 60-74.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gardner A, de Mingo Pulido Á, Hänggi K, et al. TIM-3 blockade enhances IL-12-dependent antitumor immunity by promoting CD8+ T cell and XCR1+ dendritic cell spatial co-localization. J Immunother Cancer 2022; 10: e003571. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng M, Jiang W, Kim BYS, et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19: 568-586. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dougan M, Dranoff G, Dougan SK. Cancer immunotherapy: beyond checkpoint blockade. Annu Rev Cancer Biol 2019; 3: 55-75. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Q, Wen W, Tang L, et al. Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity. OncoImmunology 2016; 5: e1183850. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang S, Wu Q, Chen T, et al. Blocking CD47 promotes antitumour immunity through CD103+ dendritic cell-NK cell axis in murine hepatocellular carcinoma model. J Hepatol 2022; 77: 467-478. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gauttier V, Pengam S, Durand J, et al. Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance. J Clin Invest 2020; 130: 6109-6123. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kepp O, Marabelle A, Zitvogel L, et al. Oncolysis without viruses—inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol 2020; 17: 49-64. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rodriguez-Ruiz ME, Vitale I, Harrington KJ, et al. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol 2020; 21: 120-134. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zheng W, Ranoa DRE, Huang X, et al. RIG-I-like receptor LGP2 is required for tumor control by radiotherapy. Cancer Res 2020; 80: 5633-5641. [Article] [CrossRef] [PubMed] [Google Scholar]
- Herrera FG, Ronet C, Ochoa de Olza M, et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov 2022; 12: 108-133. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pilones KA, Charpentier M, Garcia-Martinez E, et al. Radiotherapy cooperates with IL15 to induce antitumor immune responses. Cancer Immunol Res 2020; 8: 1054-1063. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mender I, Zhang A, Ren Z, et al. Telomere stress potentiates STING-dependent anti-tumor immunity. Cancer Cell 2020; 38: 400-411.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Haas L, Elewaut A, Gerard CL, et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. Nat Cancer 2021; 2: 693-708. [Article] [CrossRef] [PubMed] [Google Scholar]
- Galluzzi L, Humeau J, Buqué A, et al. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020; 17: 725-741. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.