Open Access
Review
Issue |
Natl Sci Open
Volume 2, Number 6, 2023
|
|
---|---|---|
Article Number | 20230016 | |
Number of page(s) | 27 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20230016 | |
Published online | 20 July 2023 |
- Teyssier J, Saenko SV, van der Marel D, et al. Photonic crystals cause active colour change in chameleons. Nat Commun 2015; 6: 6368. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gur D, Leshem B, Pierantoni M, et al. Structural basis for the brilliant colors of the sapphirinid copepods. J Am Chem Soc 2015; 137: 8408-8411. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gur D, Palmer BA, Leshem B, et al. The mechanism of color change in the neon tetra fish: A light-induced tunable photonic crystal array. Angew Chem Int Ed 2015; 54: 12426-12430. [Article] [CrossRef] [PubMed] [Google Scholar]
- Aizenberg J, Weaver JC, Thanawala MS, et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 2005; 309: 275-278. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kotov NA. Nanoparticle Assemblies and Superstructures. London: Taylor & Francis, 2006 [Google Scholar]
- Dresselhaus MS, Chen G, Tang MY, et al. New directions for low-dimensional thermoelectric materials. Adv Mater 2007; 19: 1043-1053. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cao MS, Wang XX, Zhang M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater 2019; 29: 1807398. [Article] [CrossRef] [Google Scholar]
- Sun Y, Sun B, He J, et al. Compositional and structural engineering of inorganic nanowires toward advanced properties and applications. InfoMat 2019; 1: 496-524. [Article] [CrossRef] [Google Scholar]
- Xu J, Wang Z, Zhang F, et al. Directed self-assembly of patchy microgels into anisotropic nanostructures. Macromol Rapid Commun 2020; 41: 1900505. [Article] [CrossRef] [Google Scholar]
- Avci C, Imaz I, Carné-Sánchez A, et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat Chem 2017; 10: 78-84. [Article] [Google Scholar]
- Gould OEC, Qiu H, Lunn DJ, et al. Transformation and patterning of supermicelles using dynamic holographic assembly. Nat Commun 2015; 6: 10009. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wei GQ, Wang XD, Liao LS. Recent advances in organic whispering-gallery mode lasers. Laser Photonics Rev 2020; 14: 2000257. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bobrin VA, Jia Z, Monteiro MJ. Conditions for multicompartment polymeric tadpoles via temperature directed self-assembly. Polym Chem 2017; 8: 5286-5294. [Article] [CrossRef] [Google Scholar]
- Clothier GKK, Guimarães TR, Khan M, et al. Exploitation of the nanoreactor concept for efficient synthesis of multiblock copolymers via macroraft-mediated emulsion polymerization. ACS Macro Lett 2019; 8: 989-995. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lei Y, Liao Q, Fu H, et al. Orange-blue-orange triblock one-dimensional heterostructures of organic microrods for white-light emission. J Am Chem Soc 2010; 132: 1742-1743. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhuo MP, Wu JJ, Wang XD, et al. Hierarchical self-assembly of organic heterostructure nanowires. Nat Commun 2019; 10: 3839. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Z, Yang N, Wang D. When hollow multishelled structures (HoMSs) meet metal-organic frameworks (MOFs). Chem Sci 2020; 11: 5359-5368. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang L, Wan J, Wang J, et al. Small structures bring big things: Performance control of hollow multishelled structures. Small Struct 2020; 2: 2000041. [Article] [Google Scholar]
- Qiu H, Russo G, Rupar PA, et al. Tunable supermicelle architectures from the hierarchical self-assembly of amphiphilic cylindrical b-a-b triblock co-micelles. Angew Chem Int Ed 2012; 51: 11882-11885. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng L, Wang KY, Yan TH, et al. Seed-mediated evolution of hierarchical metal-organic framework quaternary superstructures. Chem Sci 2020; 11: 1643-1648. [Article] [CrossRef] [PubMed] [Google Scholar]
- Guo CF, Cao S, Zhang J, et al. Topotactic transformations of superstructures: From thin films to two-dimensional networks to nested two-dimensional networks. J Am Chem Soc 2011; 133: 8211-8215. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hsu SH, Chi T, Kim J, et al. High-speed one-photon 3D nanolithography using controlled initiator depletion and inhibitor transport. Adv Opt Mater 2022; 10: 2102262. [Article] [CrossRef] [Google Scholar]
- Gong J, Newman RS, Engel M, et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat Commun 2017; 8: 14038. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schmitt S, Schöll A, Umbach E. Multitude of ptcda superstructures on Ag(111) and vicinal surfaces. J Phys Chem C 2017; 121: 9860-9868. [Article] [CrossRef] [Google Scholar]
- Dang D, Wu P, He C, et al. Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. J Am Chem Soc 2010; 132: 14321-14323. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Xuan W, Cui Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 2010; 22: 4112-4135. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lu G, Li S, Guo Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem 2012; 4: 310-316. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu Y, Zhou M, Li S, et al. Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small 2014; 10: 2927-2936. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhuo MP, He GP, Yuan Y, et al. Super-stacking self-assembly of organic topological heterostructures. CCS Chem 2021; 3: 413-424. [Article] [CrossRef] [Google Scholar]
- Hudson ZM, Lunn DJ, Winnik MA, et al. Colour-tunable fluorescent multiblock micelles. Nat Commun 2014; 5: 3372. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yao ZF, Wang ZY, Wu HT, et al. Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation. Angew Chem Int Ed 2020; 59: 17467-17471. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu L, Xie H, Liu Y, et al. Novel ultralong hollow hyperbranched Cu2–xSe with nanosheets hierarchical structure: Preparation, formation mechanism and properties. J Alloys Compd 2019; 802: 430-436. [Article] [CrossRef] [Google Scholar]
- Gröschel AH, Müller AHE. Self-assembly concepts for multicompartment nanostructures. Nanoscale 2015; 7: 11841-11876. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gröschel AH, Schacher FH, Schmalz H, et al. Precise hierarchical self-assembly of multicompartment micelles. Nat Commun 2012; 3: 710. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lin CCC, Chang PH, Su Y, et al. Monolithic plasmonic waveguide architecture for passive and active optical circuits. Nano Lett 2020; 20: 2950-2957. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang ZL. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators. MRS Bull 2007; 32: 109-116. [Article] [CrossRef] [Google Scholar]
- Kong XY, Wang ZL. Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals. Appl Phys Lett 2004; 84: 975-977. [Article] [CrossRef] [Google Scholar]
- Clark J, Lanzani G. Organic photonics for communications. Nat Photon 2010; 4: 438-446. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li ZZ, Wu JJ, Wang XD, et al. Controllable fabrication of in-series organic heterostructures for optical waveguide application. Adv Opt Mater 2019; 7: 1900373. [Article] [CrossRef] [Google Scholar]
- Zhuo MP, Tao YC, Wang XD, et al. 2D organic photonics: An asymmetric optical waveguide in self-assembled halogen-bonded cocrystals. Angew Chem Int Ed 2018; 57: 11300-11304. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Dong H, Liu Y, et al. Dual-wavelength lasing from organic dye encapsulated metal-organic framework microcrystals. Chem Commun 2019; 55: 3445-3448. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang ZL. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A 2007; 88: 7-15. [Article] [CrossRef] [Google Scholar]
- Tang GD, Li ZZ, Ma L, et al. Three models of magnetic ordering in typical magnetic materials. Phys Rep 2018; 758: 1-56. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- McCoey JM, Gille RW, Nasr B, et al. Rapid, high-resolution magnetic microscopy of single magnetic microbeads. Small 2019; 15: 1805159. [Article] [CrossRef] [Google Scholar]
- Zheng JY, Yan Y, Wang X, et al. Wire-on-wire growth of fluorescent organic heterojunctions. J Am Chem Soc 2012; 134: 2880-2883. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huo M, Zeng M, Li D, et al. Tailoring the multicompartment nanostructures of fluoro-containing abc triblock terpolymer assemblies via polymerization-induced self-assembly. Macromolecules 2017; 50: 8212-8220. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater 2003; 15: 353-389. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Thelander C, Agarwal P, Brongersma S, et al. Nanowire-based one-dimensional electronics. Mater Today 2006; 9: 28-35. [Article] [CrossRef] [Google Scholar]
- Pauzauskie PJ, Yang P. Nanowire photonics. Mater Today 2006; 9: 36-45. [Article] [CrossRef] [Google Scholar]
- Patolsky F, Timko BP, Zheng G, et al. Nanowire-based nanoelectronic devices in the life sciences. MRS Bull 2007; 32: 142-149. [Article] [CrossRef] [Google Scholar]
- Manna L, Milliron DJ, Meisel A, et al. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2003; 2: 382-385. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang P. The chemistry and physics of semiconductor nanowires. MRS Bull 2005; 30: 85-91. [Article] [CrossRef] [Google Scholar]
- Mieszawska AJ, Jalilian R, Sumanasekera GU, et al. The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 2007; 3: 722-756. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lieber CM, Wang ZL. Functional nanowires. MRS Bull 2007; 32: 99-108. [Article] [CrossRef] [Google Scholar]
- Lao JY, Huang JY, Wang DZ, et al. ZnO Nanobridges and nanonails. Nano Lett 2003; 3: 235-238. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Leonardi SG. Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors 2017; 5: 17. [Article] [CrossRef] [Google Scholar]
- Bierman MJ, Lau YKA, Jin S. Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett 2007; 7: 2907-2912. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang X, Song J, Wang ZL. Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J Mater Chem 2007; 17: 711. [Article] [CrossRef] [Google Scholar]
- He S, Zheng M, Yao L, et al. Preparation and properties of ZnO nanostructures by electrochemical anodization method. Appl Surf Sci 2010; 256: 2557-2562. [Article] [CrossRef] [Google Scholar]
- Yan H, He R, Johnson J, et al. Dendritic nanowire ultraviolet laser array. J Am Chem Soc 2003; 125: 4728-4729. [Article] [CrossRef] [PubMed] [Google Scholar]
- Peng ZA, Peng X. Nearly monodisperse and shape-controlled cdse nanocrystals via alternative routes: Nucleation and growth. J Am Chem Soc 2002; 124: 3343-3353. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jun Y, Jung Y, Cheon J. Architectural control of magnetic semiconductor nanocrystals. J Am Chem Soc 2002; 124: 615-619. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen S, Wang ZL, Ballato J, et al. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc 2003; 125: 16186-16187. [Article] [CrossRef] [PubMed] [Google Scholar]
- Uchiyama H, Imai H. Tin oxide meshes consisting of nanoribbons prepared through an intermediate phase in an aqueous solution. Cryst Growth Des 2007; 7: 841-843. [Article] [CrossRef] [Google Scholar]
- Sun Y, Sun B, He J, et al. Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments. Nat Commun 2020; 11: 647. [Article] [CrossRef] [PubMed] [Google Scholar]
- He J, Ma C, Yang J, et al. Transparent ultrathin SiO2 nanowire aerogel displaying novel properties when interacting with water: A promising versatile functional platform. Fundamental Res 2023; 3: 118-125. [Article] [CrossRef] [Google Scholar]
- Wang C, Dong H, Jiang L, et al. Organic semiconductor crystals. Chem Soc Rev 2018; 47: 422-500. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Dong H, Hu W. Organic semiconductor single crystals for electronics and photonics. Adv Mater 2018; 30: 1801048. [Article] [CrossRef] [Google Scholar]
- Li S, Hao Y, Guo S, et al. Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission. Sci China Chem 2021; 65: 408-417. [Article] [Google Scholar]
- Tian D, Chen Y. Optical waveguides in organic crystals of polycyclic arenes. Adv Opt Mater 2021; 9: 2002264. [Article] [CrossRef] [Google Scholar]
- Chen S, Yin H, Wu JJ, et al. Organic halogen-bonded co-crystals for optoelectronic applications. Sci China Mater 2020; 63: 1613-1630. [Article] [CrossRef] [Google Scholar]
- Yao W, Yan Y, Xue L, et al. Controlling the structures and photonic properties of organic nanomaterials by molecular design. Angew Chem Int Ed 2013; 52: 8713-8717. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang J, Zhang S, Xu S, et al. Morphology-dependent luminescence and optical waveguide property in large-size organic charge transfer cocrystals with anisotropic spatial distribution of transition dipole moment. Adv Opt Mater 2019; 8: 1901280. [Article] [Google Scholar]
- Chen S, Zhuo MP, Wang XD, et al. Optical waveguides based on one-dimensional organic crystals. PhotoniX 2021; 2: 2. [Article] [CrossRef] [Google Scholar]
- Xu CF, Yu Y, Lv Q, et al. Rational self-assembly of polygonal organic microcrystals for shape-dependent multi-directional 2D optical waveguides. Chin Chem Lett 2022; 33: 3255-3258. [Article] [CrossRef] [Google Scholar]
- Yu Y, Tao YC, Zou SN, et al. Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications. Sci China Chem 2020; 63: 1477-1482. [Article] [CrossRef] [Google Scholar]
- Ke F, Yuan YP, Qiu LG, et al. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J Mater Chem 2011; 21: 3843. [Article] [CrossRef] [Google Scholar]
- Kundu T, Mitra S, Patra P, et al. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chem Eur J 2014; 20: 10514-10518. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rupar PA, Chabanne L, Winnik MA, et al. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 2012; 337: 559-562. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hudson ZM, Boott CE, Robinson ME, et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat Chem 2014; 6: 893-898. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cai C, Lin J, Lu Y, et al. Polypeptide self-assemblies: Nanostructures and bioapplications. Chem Soc Rev 2016; 45: 5985-6012. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cong Y, Zhou Q, Xu Y, et al. Morphology transformation of multicompartment self-assemblies of ABC triblock copolymers. Polymer 2017; 116: 173-177. [Article] [CrossRef] [Google Scholar]
- Tang H, Ding Y, Jiang P, et al. High-index facets bound ripple-like ZnO nanobelts grown by chemical vapor deposition. CrystEngComm 2011; 13: 5052. [Article] [CrossRef] [Google Scholar]
- Xia X, Zhu L, Ye Z, et al. Novel ZnO microballs synthesized via pyrolysis of zinc-acetate in oxygen atmosphere. J Cryst Growth 2005; 282: 506-512. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cheng HM, Chiu WH, Lee CH, et al. Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J Phys Chem C 2008; 112: 16359-16364. [Article] [CrossRef] [Google Scholar]
- Jing X, Liu T, Wang D, et al. Controlled synthesis of water-dispersible and superparamagnetic Fe3O4 nanomaterials by a microwave-assisted solvothermal method: From nanocrystals to nanoclusters. CrystEngComm 2017; 19: 5089-5099. [Article] [CrossRef] [Google Scholar]
- Wang Q, Lei Y, Wang Y, et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ Sci 2020; 13: 1593-1616. [Article] [CrossRef] [Google Scholar]
- Liu Z, Song K, Yang B, et al. Solution plasma method assisted with MOF for the synthesis of Pt@CoOx@N-C composite catalysts with enhanced methanol oxidation performance. Int J Hydrogen Energy 2021; 46: 39743-39753. [Article] [CrossRef] [Google Scholar]
- Huang H, Chen Y, Chen Z, et al. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. J Hazard Mater 2021; 416: 125895. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim JO, Koo WT, Kim H, et al. Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nat Commun 2021; 12: 4294. [Article] [CrossRef] [PubMed] [Google Scholar]
- Deng Z, Liu S. Emerging trends in solution self-assembly of block copolymers. Polymer 2020; 207: 122914. [Article] [CrossRef] [Google Scholar]
- Wang L, Song B, Li Y, et al. Self-assembly of metallo-supramolecules under kinetic or thermodynamic control: characterization of positional isomers using scanning tunneling spectroscopy. J Am Chem Soc 2020; 142: 9809-9817. [Article] [PubMed] [Google Scholar]
- Jeong S, Kim D, Jung OS. Transformation of one-dimensional ladders into two-dimensional networks via simple solvate exchange in single-crystal-to-single-crystal mode. Cryst Growth Des 2022; 22: 3245-3251. [Article] [CrossRef] [Google Scholar]
- Zhang X, Wu JJ, Gao H, et al. Organic functional molecule-based single-crystalline nanowires for optical waveguides and their patterned crystals. Adv Opt Mater 2020; 8: 1901643. [Article] [CrossRef] [Google Scholar]
- Jin CX, Wang Y, Gao QS, et al. The solvent and zinc source dual-induced synthesis of a two dimensional zeolitic imidazolate framework with a farfalle-shape and its crystal transformation to zeolitic imidazolate framework-8. Dalton Trans 2020; 49: 2437-2443. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen N, Yu P, Guo K, et al. Rubrene-directed structural transformation of fullerene (C60) microsheets to nanorod arrays with enhanced photoelectrochemical properties. Nanomaterials 2022; 12: 954. [Article] [CrossRef] [PubMed] [Google Scholar]
- Talha K, Alamgir K, He T, et al. A three-dimensional metal-organic framework with high performance of dual cation sensing synthesized via single-crystal transformation. New J Chem 2020; 44: 11829-11834. [Article] [CrossRef] [Google Scholar]
- Ma Y, Xu CF, Mao XR, et al. Oriented self-assembly of hierarchical branch organic crystals for asymmetric photonics. J Am Chem Soc 2023; 145: 9285-9291. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu B, Zhuo MP, Chen S, et al. Controlling morphological dimensions of organic charge-transfer cocrystal by manipulating the growth kinetics for optical waveguide applications. Adv Opt Mater 2023; 11: . [Article] [Google Scholar]
- Oatley CW. The early history of the scanning electron microscope. J Appl Phys 1982; 53: R1-R13. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Smith KCA, Oatley CW. The scanning electron microscope and its fields of application. Br J Appl Phys 1955; 6: 391-399. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yoshioka T, Dersch R, Tsuji M, et al. Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy. Polymer 2010; 51: 2383-2389. [Article] [CrossRef] [Google Scholar]
- Vailonis KM, Gnanasekaran K, Powers XB, et al. Elucidating the growth of metal-organic nanotubes combining isoreticular synthesis with liquid-cell transmission electron microscopy. J Am Chem Soc 2019; 141: 10177-10182. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma C, Tan X, Kleebe HJ. In situ transmission electron microscopy study on the phase transitionsin lead-free (1−x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Am Ceram Soc 2011; 94: 4040–4044 [CrossRef] [Google Scholar]
- Prencipe I, Dellasega D, Zani A, et al. Energy dispersive X-ray spectroscopy for nanostructured thin film density evaluation. Sci Tech Adv Mater 2015; 16: 025007. [Article] [CrossRef] [PubMed] [Google Scholar]
- Titus MS, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater 2015; 89: 423-437. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang Q, Li E, Wang Y, et al. Ultralow-power vertical transistors for multilevel decoding modes. Adv Mater 2023; 35: 2208600. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Dufrêne YF. Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 2008; 6: 674-680. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu CF, Liu YP, Yu Y, et al. Two-dimensional optical waveguides at telecom wavelengths based on organic single-crystal microsheets of a charge transfer complex. J Phys Chem Lett 2023; 14: 3047-3056. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chauhan A. Powder XRD technique and its applications in science and technology. J Anal Bioanal Tech 2014; 5[Article] [Google Scholar]
- Epp J. X-ray diffraction (XRD) techniques for materials characterization. In: Hübschen G, Altpeter I, Tschuncky R, et al. Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Cambridge: Woodhead Publishing, 2016. 81–124 [Google Scholar]
- Hu P, Du K, Wei F, et al. Crystal growth, HOMO-LUMO engineering, and charge transfer degree in perylene-FxTCNQ (x = 1, 2, 4) organic charge transfer binary compounds. Cryst Growth Des 2016; 16: 3019-3027. [Article] [CrossRef] [Google Scholar]
- Khan A, Liu M, Usman R, et al. Solid emission color tuning of organic charge transfer cocrystals based on planar π-conjugated donors and TCNB. J Solid State Chem 2019; 272: 96-101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhuo MP, Yuan Y, Su Y, et al. Segregated array tailoring charge-transfer degree of organic cocrystal for the efficient near-infrared emission beyond 760 nm. Adv Mater 2022; 34: 2107169. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ekins S, Puhl AC, Zorn KM, et al. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater 2019; 18: 435-441. [Article] [PubMed] [Google Scholar]
- Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater 2016; 15: 1120-1127. [Article] [CrossRef] [PubMed] [Google Scholar]
- Masson JF, Biggins JS, Ringe E. Machine learning for nanoplasmonics. Nat Nanotechnol 2023; 18: 111-123. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Stobinski L, Lesiak B, Malolepszy A, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectr Relat Phenomena 2014; 195: 145-154. [Article] [CrossRef] [Google Scholar]
- Cui H, Chen Z, Zhong S, et al. Block copolymer assembly via kinetic control. Science 2007; 317: 647-650. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wan Q, To WP, Chang X, et al. Controlled synthesis of PdII and PtII supramolecular copolymer with sequential multiblock and amplified phosphorescence. Chem 2020; 6: 945-967. [Article] [CrossRef] [Google Scholar]
- Yao Y, Gao Z, Lv Y, et al. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew Chem Int Ed 2019; 58: 13803-13807. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun MJ, Liu Y, Yan Y, et al. In situ visualization of assembly and photonic signal processing in a triplet light-harvesting nanosystem. J Am Chem Soc 2018; 140: 4269-4278. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhuo MP, He GP, Wang XD, et al. Organic superstructure microwires with hierarchical spatial organisation. Nat Commun 2021; 12: 2252. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- He F, Gädt T, Manners I, et al. Fluorescent “barcode” multiblock co-micelles via the living self-assembly of di- and triblock copolymers with a crystalline core-forming metalloblock. J Am Chem Soc 2011; 133: 9095-9103. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang C, Yan Y, Jing YY, et al. One-dimensional organic photonic heterostructures: Rational construction and spatial engineering of excitonic emission. Adv Mater 2012; 24: 1703-1708. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rosi NL, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks. Science 2003; 300: 1127-1129. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bae TH, Lee JS, Qiu W, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew Chem Int Ed 2010; 49: 9863-9866. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu CD, Lin W. Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: Network-structure-dependent catalytic activity. Angew Chem Int Ed 2007; 46: 1075-1078. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 2009; 38: 1248. [Article] [CrossRef] [PubMed] [Google Scholar]
- McKinlay A , Morris R , Horcajada P, et al. BioMOFs: Metal-organic frameworks for biological and medical applications. Angew Chem Int Ed 2010; 49: 6260-6266. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu W, Huang J, Yang Q, et al. Multi-shelled hollow metal-organic frameworks. Angew Chem Int Ed 2017; 56: 5512-5516. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kuo CH, Tang Y, Chou LY, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc 2012; 134: 14345-14348. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Shi J, Shen W, et al. Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology 2005; 16: 2633-2638. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun B, Zeng HC. A shell-by-shell approach for synthesis of mesoporous multi-shelled hollow mofs for catalytic applications. Part Part Syst Charact 2020; 37: 2000101. [Article] [CrossRef] [Google Scholar]
- Zhuo MP, Su Y, Qu YK, et al. Hierarchical self-assembly of organic core/multi-shell microwires for trichromatic white-light sources. Adv Mater 2021; 33: 2102719. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shi H, Qi L, Ma J, et al. Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. J Am Chem Soc 2003; 125: 3450-3451. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi H, Qi L, Ma J, et al. Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv Funct Mater 2005; 15: 442-450. [Article] [CrossRef] [Google Scholar]
- Su Y, Wu B, Chen S, et al. Organic branched heterostructures with optical interconnects for photonic barcodes. Angew Chem Int Ed 2022; 61: e202117857. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang D, De J, Lei Y, et al. Organic multicomponent microparticle libraries. Nat Commun 2021; 12: 1838. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Yang C, Gu L, Ma C, et al. Controllable co-assembly of organic micro/nano heterostructures from fluorescent and phosphorescent molecules for dual anti-counterfeiting. Mater Horiz 2019; 6: 984-989. [Article] [CrossRef] [Google Scholar]
- Lao JY, Wen JG, Ren ZF. Hierarchical ZnO nanostructures. Nano Lett 2002; 2: 1287-1291. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gao PX, Wang ZL. Nanopropeller arrays of zinc oxide. Appl Phys Lett 2004; 84: 2883-2885. [Article] [CrossRef] [Google Scholar]
- di Gregorio MC, Ranjan P, Houben L, et al. Metal-coordination-induced fusion creates hollow crystalline molecular superstructures. J Am Chem Soc 2018; 140: 9132-9139. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li L, Sun N, Huang Y, et al. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv Funct Mater 2008; 18: 1194-1201. [Article] [CrossRef] [Google Scholar]
- Sun Y, Lei Y, Hu W, et al. Epitaxial growth of nanorod meshes from luminescent organic cocrystals via crystal transformation. J Am Chem Soc 2020; 142: 7265-7269. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lei Y, Wang S, Lai Z, et al. Two-dimensional C60 nano-meshes via crystal transformation. Nanoscale 2019; 11: 8692-8698. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng Z, Hai T, Liang Y, et al. Hyperbranched microwire networks of organic cocrystals with optical waveguiding and light-harvesting abilities. Angew Chem Int Ed 2021; 60: 27046-27052. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.