Open Access
Issue
Natl Sci Open
Volume 2, Number 6, 2023
Article Number 20230019
Number of page(s) 16
Section Chemistry
DOI https://doi.org/10.1360/nso/20230019
Published online 01 November 2023
  • Koutinas AA, Du C, Wang RH et al. Production of chemicals from biomass. In: Clark J, Deswarte F (eds.). Introduction to Chemicals from Biomass. Chichester, UK: John Wiley & Sons, Ltd., 2008. 77–101 [CrossRef] [Google Scholar]
  • Sheldon RA. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem 2014; 16: 950-963. [Article] [CrossRef] [Google Scholar]
  • Anastas PT, Zimmerman JB. The periodic table of the elements of green and sustainable chemistry. Green Chem 2019; 21: 6545-6566. [Article] [CrossRef] [Google Scholar]
  • Wu X, Luo N, Xie S, et al. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 2020; 49: 6198-6223. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Luterbacher JS, Martin Alonso D, Dumesic JA. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem 2014; 16: 4816-4838. [Article] [CrossRef] [Google Scholar]
  • Rinaldi R, Schuth F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2009; 2: 1096-1107. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xia Q, Chen Z, Shao Y, et al. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat Commun 2016; 7: 11162. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang T. Taking on all of the biomass for conversion. Science 2020; 367: 1305-1306. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liao Y, Koelewijn SF, Van den Bossche G, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 2020; 367: 1385-1390. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tuck CO, Pérez E, Horváth IT, et al. Valorization of biomass: Deriving more value from waste. Science 2012; 337: 695-699. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Huang Z, Luo N, Zhang C, et al. Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022; 6: 197-214. [Article] [Google Scholar]
  • Queneau Y, Han B. Biomass: Renewable carbon resource for chemical and energy industry. Innovation 2022; 3: 100184. [Article] [NASA ADS] [Google Scholar]
  • Chen X, Yang H, Hülsey MJ, et al. One-step synthesis of N-heterocyclic compounds from carbohydrates over tungsten-based catalysts. ACS Sustain Chem Eng 2017; 5: 11096-11104. [Article] [CrossRef] [Google Scholar]
  • Ren T, Qi W, He Z, et al. One-pot production of phenazine from lignin-derived catechol. Green Chem 2022; 24: 1224-1230. [Article] [CrossRef] [Google Scholar]
  • Yu F, Darcel C, Fischmeister C. Single-step sustainable production of hydroxy-functionalized 2-imidazolines from carbohydrates. ChemSusChem 2022; 15: 5-9. [Article] [Google Scholar]
  • Katoh A, Yoshida T, Ohkanda J. Synthesis of quinoxaline derivatives bearing the styryl and phenylethynyl groups and application to a fluorescence derivatization reagent. Heterocycles 2000; 52: 911-920. [Article] [CrossRef] [Google Scholar]
  • Pereira JA, Pessoa AM, Cordeiro MNDS, et al. Quinoxaline, its derivatives and applications: A state of the art review. Eur J Medicinal Chem 2015; 97: 664-672. [Article] [CrossRef] [Google Scholar]
  • Cheeseman GWH, Cookson RF. Condensed pyrazines. In: Weissberger A, Taylor EC (eds.). Chemistry of Heterocyclic Compounds. Vol 35. New York: John Wiley & Sons Ltd., 1979. 1–809 [Google Scholar]
  • Zviely M. Aroma chemicals II: Heterocycles. In: Rowe DJ (ed.). Chemistry and Technology of Flavors and Fragrances. Oxford, UK: Blackwell Publishing Ltd., 2005. 85–115 [Google Scholar]
  • Singh DP, Deivedi SK, Hashim SR, et al. Synthesis and antimicrobial activity of some new quinoxaline derivatives. Pharmaceuticals 2010; 3: 2416-2425. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Kim YB, Kim YH, Park JY, et al. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg Med Chem Lett 2004; 14: 541-544. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Baer H, Bergamo M, Forlin A, et al. Propylene oxide. In: Gerhartz W (ed.). Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. 1–29 [Google Scholar]
  • Sullivan CJ, Kuenz A, Vorlop K-D. Propanediols. In: Gerhartz W (ed.). Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, 1–15 [Google Scholar]
  • Mao J, Deng M, Chen L, et al. Novel microfibrous-structured silver catalyst for high efficiency gas-phase oxidation of alcohols. AIChE J 2010; 56: 1545-1556. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Weber M, Pompetzki W, Bonmann R, et al. Acetone. In: Gerhartz W (ed.). Ullmann’s Encyclopedia of Industrial Chemistry. Vol 207. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. 1–19 [Google Scholar]
  • Riley HL, Morley JF, Friend NAC. 255. Selenium dioxide, a new oxidising agent. Part I. Its reaction with aldehydes and ketones. J Chem Soc 1932: 1875–1883 [CrossRef] [Google Scholar]
  • Holm MS, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 2010; 328: 602-605. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Shi N, Liu Q, Ju R, et al. Condensation of α-carbonyl aldehydes leads to the formation of solid humins during the hydrothermal degradation of carbohydrates. ACS Omega 2019; 4: 7330-7343. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Pelckmans M, Vermandel W, Van Waes F, et al. Low-temperature reductive aminolysis of carbohydrates to diamines and aminoalcohols by heterogeneous catalysis. Angew Chem Int Ed 2017; 56: 14540-14544. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Pelckmans M, Mihaylov T, Faveere W, et al. Catalytic reductive aminolysis of reducing sugars: elucidation of reaction mechanism. ACS Catal 2018; 8: 4201-4212. [Article] [CrossRef] [Google Scholar]
  • Deng W, Wang P, Wang B, et al. Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)-Sn(II) catalysts. Green Chem 2018; 20: 735-744. [Article] [CrossRef] [Google Scholar]
  • Hodge JE. Dehydrated foods, chemistry of browning reactions in model systems. J Agric Food Chem 1953; 1: 928-943. [Article] [CrossRef] [Google Scholar]
  • Nursten H. The chemistry of nonenzymic browning. In: Nursten H (ed.). The Maillard Reaction. Vol 54. Cambridge: Royal Society of Chemistry, 2005. 5–30 [Google Scholar]
  • Kroh LW. Caramelisation in food and beverages. Food Chem 1994; 51: 373-379. [Article] [CrossRef] [Google Scholar]
  • Esposito D, Antonietti M. Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes. ChemSusChem 2013; 6: 989-992. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tolborg S, Sádaba I, Osmundsen CM, et al. Tin-containing silicates: Alkali salts improve methyl lactate yield from sugars. ChemSusChem 2015; 8: 613-617. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yu F, Xiao FS. Room-temperature and ambient-pressure conversion of renewable carbohydrates to value-added aromatic N-heterocycles under ultrasonic irradiation conditions. Green Chem 2023; 25: 1023-1031. [Article] [CrossRef] [Google Scholar]
  • Orazov M, Davis ME. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures. Proc Natl Acad Sci USA 2015; 112: 11777-11782. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Angyal SJ. The Lobry de Bruyn-Alberda van Ekenstein transformation and related reactions. In: Stütz AE (ed.). Glycoscience. Vol 215. Berlin: Springer, 2001. 1–14 [Google Scholar]
  • Assary RS, Curtiss LA. Comparison of sugar molecule decomposition through glucose and fructose: A high-level quantum chemical study. Energy Fuels 2012; 26: 1344-1352. [Article] [CrossRef] [Google Scholar]
  • Huyghues-Despointes A, Yaylayan VA. Retro-aldol and redox reactions of amadori compounds: Mechanistic studies with variously labeled D-[13C]glucose. J Agric Food Chem 1996; 44: 672-681. [Article] [CrossRef] [Google Scholar]
  • Cha J, Debnath T, Lee KG. Analysis of α-dicarbonyl compounds and volatiles formed in Maillard reaction model systems. Sci Rep 2019; 9: 5325. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu C, Carraher JM, Swedberg JL, et al. Selective base-catalyzed isomerization of glucose to fructose. ACS Catal 2014; 4: 4295-4298. [Article] [CrossRef] [Google Scholar]
  • Wang Y, Deng W, Wang B, et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 2013; 4: 2141. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Xu S, Tian Q, Xiao Y, et al. Regulating the competitive reaction pathway in glycerol conversion to lactic acid/glycolic acid selectively. J Catal 2022; 413: 407-416. [Article] [CrossRef] [Google Scholar]
  • Estevez Y, Quiliano M, Burguete A, et al. Trypanocidal properties, structure-activity relationship and computational studies of quinoxaline 1,4-di-N-oxide derivatives. Exp Parasitology 2011; 127: 745-751. [Article] [CrossRef] [Google Scholar]
  • Carta A, Loriga M, Paglietti G, et al. Synthesis, anti-mycobacterial, anti-trichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur J Med Chem 2004; 39: 195-203. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Collins JL, Dambek PJ, Goldstein SW, et al. CP-99,711: A non-peptide glucagon receptor antagonist. Bioorg Med Chem Lett 1992; 2: 915-918. [Article] [CrossRef] [Google Scholar]
  • Patil SN, Sarma BV. Androgen receptor antagonists. Patent US2019/016176, 2019 [Google Scholar]
  • Zarranz B, Jaso A, Lima LM et al. Antiplasmodial activity of 3-trifluoromethyl-2-carbonylquinoxaline di-N-oxide derivatives. Braz J Pharm Sci 2006; 42: 357–361 [Google Scholar]
  • Villar R, Vicente E, Solano B, et al. In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. J Antimicrob Chemother 2008; 62: 547-554. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Prat D, Wells A, Hayler J, et al. CHEM21 selection guide of classical- and less classical-solvents. Green Chem 2015; 18: 288-296. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.