Issue |
Natl Sci Open
Volume 3, Number 1, 2024
Special Topic: Climate Change Impacts and Adaptation
|
|
---|---|---|
Article Number | 20230022 | |
Number of page(s) | 22 | |
Section | Earth and Environmental Sciences | |
DOI | https://doi.org/10.1360/nso/20230022 | |
Published online | 05 January 2024 |
- Santini M, Noce S, Antonelli M, et al. Complex drought patterns robustly explain global yield loss for major crops. Sci Rep 2022; 12: 5792. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Su B, Huang J, Fischer T, et al. Drought losses in China might double between the 1.5°C and 2.0°C warming. Proc Natl Acad Sci USA 2018; 115: 10600-10605. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huang WW, Chen XJ, Fan YR. Management of contaminated drinking water source in rural communities. J Environ Inform 2021; 39: 136-151. [Article] [Google Scholar]
- Schubert SD, Stewart RE, Wang H, et al. Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J Clim 2016; 29: 3989-4019. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Barker LJ, Hannaford J, Chiverton A, et al. From meteorological to hydrological drought using standardised indicators. Hydrol Earth Syst Sci 2016; 20: 2483-2505. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wan W, Zhao J, Li HY, et al. Hydrological drought in the anthropocene: Impacts of local water extraction and reservoir regulation in the U.S. JGR Atmos 2017; 122: 11313-11328. [Article] [Google Scholar]
- Van Loon AF, Stahl K, Di Baldassarre G, et al. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol Earth Syst Sci 2016; 20: 3631-3650. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wu J, Chen X, Love CA, et al. Determination of water required to recover from hydrological drought: Perspective from drought propagation and non-standardized indices. J Hydrol 2020; 590: 125227. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hellwig J, de Graaf IEM, Weiler M, et al. Large-scale assessment of delayed groundwater responses to drought. Water Resources Res 2020; 56: e2019WR025441. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Van Loon AF. Hydrological drought explained. WIREs Water 2015; 2: 359-392. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Rajbanshi J, Das S. The variability and teleconnections of meteorological drought in the Indian summer monsoon season: Implications for staple crop production. J Hydrol 2021; 603: 126845. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shiru MS, Shahid S, Dewan A, et al. Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Sci Rep 2020; 10: 10107. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Meque A, Abiodun BJ. Simulating the link between ENSO and summer drought in Southern Africa using regional climate models. Clim Dyn 2015; 44: 1881-1900. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mondal SK, Huang J, Wang Y, et al. Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis. Sci Total Environ 2021; 771: 145186. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ahmed K, Shahid S, Chung ES, et al. Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan. J Hydrol 2019; 570: 473-485. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Oguntunde PG, Abiodun BJ, Lischeid G. Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa. Glob Planet Change 2017; 155: 121-132. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wu G, Chen J, Shi X, et al. Impacts of global climate warming on meteorological and hydrological droughts and their propagations. Earths Future 2022; 10: e2021EF002542. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun CX, Huang GH, Fan Y, et al. Drought occurring with hot extremes: Changes under future climate change on loess plateau, China. Earths Future 2019; 7: 587-604. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Duan K, Mei Y. Comparison of meteorological, hydrological and agricultural drought responses to climate change and uncertainty assessment. Water Resour Manage 2014; 28: 5039-5054. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jia Q, Jia H, Li Y, et al. Applicability of CMIP5 and CMIP6 models in China: Reproducibility of historical simulation and uncertainty of future projection. J Clim 2023; 36: 5809-5824. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang X, Li YP, Huang GH, et al. Development of a multi-GCMs Bayesian copula method for assessing multivariate drought risk under climate change: A case study of the Aral Sea basin. Catena 2022; 212: 106048. [Article] [CrossRef] [Google Scholar]
- Yue S, Sheng X, Yang F. Spatiotemporal evolution and meteorological triggering conditions of hydrological drought in the Hun River basin, NE China. Nat Hazards Earth Syst Sci 2022; 22: 995-1014. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Najib MK, Nurdiati S, Sopaheluwakan A. Multivariate fire risk models using copula regression in Kalimantan, Indonesia. Nat Hazards 2022; 113: 1263-1283. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hasan IF, Abdullah R. Agricultural drought characteristics analysis using copula. Water Resour Manage 2022; 36: 5915-5930. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Van de Vyver H, Van den Bergh J. The Gaussian copula model for the joint deficit index for droughts. J Hydrol 2018; 561: 987-999. [Article] [CrossRef] [Google Scholar]
- Sadegh M, Ragno E, AghaKouchak A. Multivariate copula analysis toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Res 2017; 53: 5166-5183. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jiang T, Su X, Zhang G, et al. Estimating propagation probability from meteorological to ecological droughts using a hybrid machine learning copula method. Hydrol Earth Syst Sci 2023; 27: 559-576. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jahannemaei N, Khosravinia P, Sanikhani H, et al. Toward analyzing meteorological droughts in western Iran: A multivariate approach based on vine copulas. Nat Hazards 2023; 116: 1903-1929. [Article] [CrossRef] [Google Scholar]
- Farrokhi A, Farzin S, Mousavi SF. Meteorological drought analysis in response to climate change conditions, based on combined four-dimensional vine copulas and data mining (VC-DM). J Hydrol 2021; 603: 127135. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Erhardt TM, Czado C. Standardized drought indices: A novel univariate and multivariate approach. J R Stat Soc Ser C-Appl Stat 2018; 67: 643-664. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Wang T, Tu X, Singh VP, et al. A composite index coupling five key elements of water cycle for drought analysis in Pearl River basin, China. J Environ Manage 2022; 320: 115813. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ansell L, Dalla Valle L. Social media integration of flood data: A vine copula-based approach. J Environ Inform 2022; 39: 97-110. [Article] [Google Scholar]
- Yaseen ZM, Awadh SM, Sharafati A, et al. Complementary data-intelligence model for river flow simulation. J Hydrol 2018; 567: 180-190. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jia QM, Li YP, Li YF, et al. Analyzing variation of inflow from the Syr Darya to the Aral Sea: A Bayesian-neural-network-based factorial analysis method. J Hydrol 2020; 587: 124976. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gao PP, Li YP, Huang GH, et al. An integrated Bayesian least-squares-support-vector-machine factorial-analysis (B-LSVM-FA) method for inferring inflow from the Amu Darya to the Aral Sea under ensemble prediction. J Hydrol 2021; 594: 125909. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang H, Li YP, Liu YR, et al. Analyzing streamflow variation in the data-sparse mountainous regions: An integrated CCA-RF-FA framework. J Hydrol 2021; 596: 126056. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pan Y, Zeng XK, Gao XY, et al. Assessing human health risk to dnapls exposure in bayesian uncertainty analysis. J Environ Inform 2021; 39: 67-80. [Article] [Google Scholar]
- Yin J, Gentine P, Slater L, et al. Future socio-ecosystem productivity threatened by compound drought-heatwave events. Nat Sustain 2023; 6: 259-272. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Su YY, Li YP, Liu YR, et al. Development of an integrated PCA-SCA-ANOVA framework for assessing multi-factor effects on water flow: A case study of the Aral Sea. Catena 2021; 197: 104954. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Duan R, Huang G, Zhou X, et al. Ensemble drought exposure projection for multifactorial interactive effects of climate change and population dynamics: Application to the pearl river basin. Earths Future 2021; 9: e2021EF002215. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gevaert AI, Veldkamp TIE, Ward PJ. The effect of climate type on timescales of drought propagation in an ensemble of global hydrological models. Hydrol Earth Syst Sci 2018; 22: 4649-4665. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang R, Chen X, Zhang Z, et al. Evolution of hydrological drought under the regulation of two reservoirs in the headwater basin of the Huaihe River, China. Stoch Environ Res Risk Assess 2015; 29: 487-499. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change. Glob Change Biol 2015; 21: 3520-3531. [Article] [Google Scholar]
- Al-Faraj FAM, Scholz M. Assessment of temporal hydrologic anomalies coupled with drought impact for a transboundary river flow regime: The Diyala watershed case study. J Hydrol 2014; 517: 64-73. [Article] [CrossRef] [Google Scholar]
- Peña-Angulo D, Vicente-Serrano SM, Domínguez-Castro F, et al. Unravelling the role of vegetation on the different trends between climatic and hydrologic drought in headwater catchments of Spain. Anthropocene 2021; 36: 100309. [Article] [CrossRef] [Google Scholar]
- Wang J, Wang W, Cheng H, et al. Propagation from meteorological to hydrological drought and its influencing factors in the huaihe river basin. Water 2021; 13: 1985. [Article] [CrossRef] [Google Scholar]
- Van Loon AF, Rangecroft S, Coxon G, et al. Using paired catchments to quantify the human influence on hydrological droughts. Hydrol Earth Syst Sci 2019; 23: 1725-1739. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun L, Sun J, Li Y, et al. Development of an ensemble Bayesian inference-based copula approach for bivariate risk evaluation of extreme precipitation under climate change. Intl J Climatol 2022; 42: 8755-8776. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xu K, Wu C, Zhang C, et al. Uncertainty assessment of drought characteristics projections in humid subtropical basins in China based on multiple CMIP5 models and different index definitions. J Hydrol 2021; 600: 126502. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wu C, Yeh PJF, Ju J, et al. Assessing the spatiotemporal uncertainties in future meteorological droughts from CMIP5 models, emission scenarios, and bias corrections. J Clim 2021; 34: 1903-1922. [Article] [CrossRef] [Google Scholar]
- Breiman L. Random forests. Machine Learn 2001; 45: 5-32. [Article] [CrossRef] [Google Scholar]
- Zhou B, Li Y, Huang G, et al. Assessing distributed solar power generation potential under multi-gcms: A factorial-analysis-based random forest method. ACS Sustain Chem Eng 2022; 10: 12588-12601. [Article] [CrossRef] [Google Scholar]
- Schoppa L, Disse M, Bachmair S. Evaluating the performance of random forest for large-scale flood discharge simulation. J Hydrol 2020; 590: 125531. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shiri N, Shiri J, Kazemi MH, et al. Estimation of CO2 flux components over northern hemisphere forest ecosystems by using random forest method through temporal and spatial data scanning procedures. Environ Sci Pollut Res 2022; 29: 16123-16137. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Vicente-Serrano SM, López-Moreno JI, Beguería S, et al. Accurate computation of a streamflow drought index. J Hydrol Eng 2012; 17: 318-332. [Article] [CrossRef] [Google Scholar]
- Kao SC, Govindaraju RS. A copula-based joint deficit index for droughts. J Hydrol 2010; 380: 121-134. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang Q, Li YP, Huang GH, et al. Copula function with Variational Bayesian Monte Carlo for unveiling uncertainty impacts on meteorological and agricultural drought propagation. J Hydrol 2023; 622: 129669. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xu Y, Zhang X, Hao Z, et al. Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification. J Hydrol 2021; 598: 126194. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu Y, Liu Y, Wang W, et al. A global perspective on the probability of propagation of drought: From meteorological to soil moisture. J Hydrol 2021; 603: 126907. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ionita M, Scholz P, Chelcea S. Assessment of droughts in romania using the standardized precipitation index. Nat Hazards 2016; 81: 1483-1498. [Article] [CrossRef] [Google Scholar]
- Nelsen RB. Copulas and quasi-copulas: An introduction to their properties and applications. In: 24th Linz Seminar on Fuzzy Set Theory. Linz, 2003, 391–413 [Google Scholar]
- Chegwidden OS, Nijssen B, Rupp DE, et al. How do modeling decisions affect the spread among hydrologic climate change projections? Exploring a large ensemble of simulations across a diversity of hydroclimates. Earths Future 2019; 7: 623-637. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen Y, Li Z, Fang G, et al. Large hydrological processes changes in the transboundary rivers of central asia. JGR Atmos 2018; 123: 5059-5069. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang T, Li Q, Chen X, et al. Spatiotemporal variability of the precipitation concentration and diversity in Central Asia. Atmos Res 2020; 241: 104954. [Article] [CrossRef] [Google Scholar]
- Armstrong RL, Rittger K, Brodzik MJ, et al. Runoff from glacier ice and seasonal snow in High Asia: Separating melt water sources in river flow. Reg Environ Change 2019; 19: 1249-1261. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang X, Li YP, Liu YR, et al. A MCMC-based maximum entropy copula method for bivariate drought risk analysis of the Amu Darya River Basin. J Hydrol 2020; 590: 125502. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- O’Neill BC, Tebaldi C, van Vuuren DP, et al. The scenario model intercomparison project (scenariomip) for CMIP6. Geosci Model Dev 2016; 9: 3461-3482. [Article] [CrossRef] [Google Scholar]
- Thrasher B, Maurer EP, McKellar C, et al. Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 2012; 16: 3309-3314. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Rodell M, Houser PR, Jambor U, et al. The global land data assimilation system. Bull Amer Meteor Soc 2004; 85: 381-394. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Warszawski L, Frieler K, Huber V, et al. The inter-sectoral impact model intercomparison project (ISI-MIP): Project framework. Proc Natl Acad Sci USA 2014; 111: 3228-3232. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ukkola AM, De Kauwe MG, Roderick ML, et al. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys Res Lett 2020; 47: e87820. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ju J, Wu C, Li J, et al. Global evaluation of model agreement and uncertainty in terrestrial water storage simulations from ISIMIP 2b framework. J Hydrol 2023; 617: 129137. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li Y, Chen A, Mao G, et al. Multi-model analysis of historical runoff changes in the Lancang-Mekong River Basin: Characteristics and uncertainties. J Hydrol 2023; 619: 129297. [Article] [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.