Issue
Natl Sci Open
Volume 3, Number 1, 2024
Special Topic: Climate Change Impacts and Adaptation
Article Number 20230023
Number of page(s) 46
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20230023
Published online 11 January 2024
  • Li Y, Pizer WA, Wu L. Climate change and residential electricity consumption in the Yangtze River Delta, China. Proc Natl Acad Sci USA 2019; 116: 472-477. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Fan JL, Hu JW, Zhang X. Impacts of climate change on electricity demand in China: An empirical estimation based on panel data. Energy 2019; 170: 880-888. [Article] [CrossRef] [Google Scholar]
  • Ma Z, Zhao Z, Liu C, et al. The impacts and adaptation of climate extremes on the power system: Insights from the texas power outage caused by extreme cold wave. Chn J Urb EnvironStud 2022; 10: 2250004. [Article] [CrossRef] [Google Scholar]
  • Zhao X, Cai Q, Zhang S, et al. The substitution of wind power for coal-fired power to realize China’s CO2 emissions reduction targets in 2020 and 2030. Energy 2017; 120: 164-178. [Article] [CrossRef] [Google Scholar]
  • Khan S, Hanjra MA, Mu J. Water management and crop production for food security in China: A review. Agric Water Manage 2009; 96: 349-360. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • NBS (National Bureau of Statistics). China Statistical Yearbook 2021. Beijing: China Statistics Press, 2022 [Google Scholar]
  • Textor C. Distribution of the gross domestic product (GDP) in China in 2022, by industry. National Bureau of Statistics of China, [Article] [Google Scholar]
  • Friedlingstein P, O’Sullivan M, Jones MW, et al. Global carbon budget 2020. Earth Syst Sci Data 2020; 12: 3269-3340. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ministry of Ecology and Environment of People’s Republic of China. The People’s Republic of China Second Biennial Update Report on Climate Change. Beijing, 2020 [Google Scholar]
  • Wang H, Li X, Zhou C, et al. Status and development trend of energy saving technology of Chinese steel industry. Energy Metall Ind, 2018; 37: 3 [Google Scholar]
  • Hong B, Zhang W, Zhou Y, et al. Energy-internet-oriented microgrid energy management system architecture and its application in China. Appl Energy 2018; 228: 2153-2164. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ju Y, Sun G, Chen Q, et al. A model combining convolutional neural network and lightGBM algorithm for ultra-short-term wind power forecasting. IEEE Access 2019; 7: 28309-28318. [Article] [Google Scholar]
  • Zheng X, Wang C, Cai W, et al. The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change. Appl Energy 2016; 171: 444-455. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Guerra OJ, Tejada DA, Reklaitis GV. Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization. Appl Energy 2019; 233-234: 584-598. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fan JL, Hu JW, Zhang X, et al. Impacts of climate change on hydropower generation in China. Math Comput Simul 2020; 167: 4-18. [Article] [CrossRef] [Google Scholar]
  • Qin P, Xu H, Liu M, et al. Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation. J Hydrol 2020; 580: 123922. [Article] [CrossRef] [Google Scholar]
  • Feng M, Liu P, Guo S, et al. Adapting reservoir operations to the nexus across water supply, power generation, and environment systems: An explanatory tool for policy makers. J Hydrol 2019; 574: 257-275. [Article] [CrossRef] [Google Scholar]
  • He S, Guo S, Yang G, et al. Optimizing operation rules of cascade reservoirs for adapting climate change. Water Resour Manage 2020; 34: 101-120. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu X, Tang Q, Voisin N, et al. Projected impacts of climate change on hydropower potential in China. Hydrol Earth Syst Sci 2016; 20: 3343-3359. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lumbroso DM, Woolhouse G, Jones L. A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa. Climatic Change 2015; 133: 621-633. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gu W, He W, Su H, et al. Prioritizing climate change adaptation needs for hydropower sector in China. Environ Res Lett 2022; 17: 034040. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cheng Q, Liu P, Xia J, et al. Contribution of complementary operation in adapting to climate change impacts on a large-scale wind-solar-hydro system: A case study in the Yalong River Basin, China. Appl Energy 2022; 325: 119809. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hashim N, Mohammed MN, AL Selvarajan R, et al. Study on solar panel cleaning robot. In: Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). Selangor: IEEE, 2019. 56–61 [CrossRef] [Google Scholar]
  • Nahar Myyas R, Al-Dabbasa M, Tostado-Véliz M, et al. A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Sol Energy 2022; 237: 19-28. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013; 33: 311-321. [Article] [CrossRef] [Google Scholar]
  • Ji L, Wu Y, Sun L, et al. Solar photovoltaics can help China fulfill a net-zero electricity system by 2050 even facing climate change risks. Resources Conservation Recycling 2022; 186: 106596. [Article] [CrossRef] [Google Scholar]
  • Sun H, Qiu C, Lu L, et al. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data. Appl Energy 2020; 280: 115880. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Pieralli S, Ritter M, Odening M. Efficiency of wind power production and its determinants. Energy 2015; 90: 429-438. [Article] [CrossRef] [Google Scholar]
  • Costoya X, deCastro M, Carvalho D, et al. Climate change impacts on the future offshore wind energy resource in China. Renew Energy 2021; 175: 731-747. [Article] [CrossRef] [Google Scholar]
  • Luo L, Zhuang Y, Duan Q, et al. Local climatic and environmental effects of an onshore wind farm in North China. Agric For Meteor 2021; 308-309: 108607. [Article] [CrossRef] [Google Scholar]
  • Gernaat DEHJ, de Boer HS, Daioglou V, et al. Climate change impacts on renewable energy supply. Nat Clim Chang 2021; 11: 119-125. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • van Ruijven BJ, De Cian E, Sue Wing I. Amplification of future energy demand growth due to climate change. Nat Commun 2019; 10: 2762. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu L, He G, Wu M, et al. Climate change impacts on planned supply-demand match in global wind and solar energy systems. Nat Energy 2023; 8: 870-880. [Article] [CrossRef] [Google Scholar]
  • Chrisandina NJ, Vedant S, Iakovou E, et al. Multi-scale integration for enhanced resilience of sustainable energy supply chains: Perspectives and challenges. Comput Chem Eng 2022; 164: 107891. [Article] [CrossRef] [Google Scholar]
  • Zhou W, Zhu B, Fuss S, et al. Uncertainty modeling of CCS investment strategy in China’s power sector. Appl Energy 2010; 87: 2392-2400. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang M, Yao M, Wang S, et al. Study of the emissions and spatial distributions of various power-generation technologies in China. J Environ Manage 2021; 278: 111401. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Kang Y, Yang Q, Bartocci P, et al. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renew Sustain Energy Rev 2020; 127: 109842. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Díaz H, Guedes Soares C. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng 2020; 209: 107381. [Article] [CrossRef] [Google Scholar]
  • Feng Y, Lin H, Ho SL, et al. Overview of wind power generation in China: Status and development. Renew Sustain Energy Rev 2015; 50: 847-858. [Article] [CrossRef] [Google Scholar]
  • Dai J, Yang X, Wen L. Development of wind power industry in China: A comprehensive assessment. Renew Sustain Energy Rev 2018; 97: 156-164. [Article] [CrossRef] [Google Scholar]
  • Yang J, Liu Q, Li X, et al. Overview of wind power in China: Status and future. Sustainability 2017; 9: 1454. [Article] [CrossRef] [Google Scholar]
  • Xu K, Chang J, Zhou W, et al. A comprehensive estimate of life cycle greenhouse gas emissions from onshore wind energy in China. J Cleaner Production 2022; 338: 130683. [Article] [CrossRef] [Google Scholar]
  • Sun X, Wang X, Liu L, et al. Development and present situation of hydropower in China. Water Policy 2019; 21: 565-581. [Article] [CrossRef] [Google Scholar]
  • Chu P, Liu P, Pan H. Prospects of hydropower industry in the Yangtze River Basin: China’s green energy choice. Renew Energy 2019; 131: 1168-1185. [Article] [CrossRef] [Google Scholar]
  • Zhang X, Jiao K, Zhang J, et al. A review on low carbon emissions projects of steel industry in the World. J Cleaner Production 2021; 306: 127259. [Article] [CrossRef] [Google Scholar]
  • Ming B, Liu P, Guo S, et al. Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation. Energy 2019; 179: 268-279. [Article] [CrossRef] [Google Scholar]
  • Allouhi A, Rehman S, Buker MS, et al. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. J Cleaner Production 2022; 362: 132339. [Article] [CrossRef] [Google Scholar]
  • Qiu T, Wang L, Lu Y, et al. Potential assessment of photovoltaic power generation in China. Renew Sustain Energy Rev 2022; 154: 111900. [Article] [CrossRef] [Google Scholar]
  • Qaisrani MA, Wei J, Khan LA. Potential and transition of concentrated solar power: A case study of China. Sustain Energy Technologies Assessments 2021; 44: 101052. [Article] [CrossRef] [Google Scholar]
  • Li R, Zhang H, Wang H, et al. Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China. Energy 2019; 174: 310-322. [Article] [CrossRef] [Google Scholar]
  • Chen F, Yang Q, Zheng N, et al. Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS). Appl Energy 2022; 315: 119045. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gao R, Wu F, Zou Q, et al. Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China. Energy 2022; 243: 123061. [Article] [CrossRef] [Google Scholar]
  • Li C. Technical and economic potential evaluation of an off-grid hybrid wind-fuel cell-battery energy system in Xining, China. Int J Green Energy 2021; 18: 258-270. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Aberilla JM, Gallego-Schmid A, Stamford L, et al. Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities. Appl Energy 2020; 258: 114004. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wilberforce T, Olabi AG, Sayed ET, et al. Wind turbine concepts for domestic wind power generation at low wind quality sites. J Cleaner Production 2023; 394: 136137. [Article] [CrossRef] [Google Scholar]
  • Chen J, Zhang Y, Li X, et al. Strategic integration of vehicle-to-home system with home distributed photovoltaic power generation in Shanghai. Appl Energy 2020; 263: 114603. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fang Y, Wei Y. Climate change adaptation on the Qinghai-Tibetan Plateau: The importance of solar energy utilization for rural household. Renew Sustain Energy Rev 2013; 18: 508-518. [Article] [CrossRef] [Google Scholar]
  • Majeed Butt O, Zulqarnain M, Majeed Butt T. Recent advancement in smart grid technology: Future prospects in the electrical power network. Ain Shams Eng J 2021; 12: 687-695. [Article] [CrossRef] [Google Scholar]
  • Zhou M, Yan J, Feng D. Digital twin framework and its application to power grid online analysis. CSEE J Power Energy Syst 2019; 5: 391–398 [Google Scholar]
  • Li Y, Han M, Yang Z, et al. Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: A Bi-level approach. IEEE Trans Sustain Energy 2021; 12: 2321-2331. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Aslam S, Herodotou H, Mohsin SM, et al. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew Sustain Energy Rev 2021; 144: 110992. [Article] [CrossRef] [Google Scholar]
  • Hu Y, Li J, Hong M, et al. Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process. Energy 2019; 170: 1215-1227. [Article] [CrossRef] [Google Scholar]
  • Li J, Liu P, Li Z. Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy 2020; 208: 118387. [Article] [CrossRef] [Google Scholar]
  • Zhao J, Liu M, Zhang X, et al. Off-grid solar photovoltaic-alkaline electrolysis-metal hydrogen storage-fuel cell system: An investigation for application in eco-neighborhood in Ningbo, China. Int J Hydrogen Energy 2023; 48: 19172-19187. [Article] [CrossRef] [Google Scholar]
  • Li C, Zheng Y, Li Z, et al. Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China. Energy 2021; 230: 120728. [Article] [CrossRef] [Google Scholar]
  • Li X, Wang S. A review on energy management, operation control and application methods for grid battery energy storage systems. CSEE J Power Energy Syst 2019; 7: 1026. [Article] [Google Scholar]
  • Mahmoud M, Ramadan M, Olabi AG, et al. A review of mechanical energy storage systems combined with wind and solar applications. Energy Convers Manage 2020; 210: 112670. [Article] [CrossRef] [Google Scholar]
  • Zhou Q, Du D, Lu C, et al. A review of thermal energy storage in compressed air energy storage system. Energy 2019; 188: 115993. [Article] [CrossRef] [Google Scholar]
  • Li P, Li G, Liu J, et al. Performance comparison and multi-objective optimization of improved and traditional compressed air energy storage systems integrated with solar collectors. J Energy Storage 2023; 58: 106149. [Article] [CrossRef] [Google Scholar]
  • Palacios A, Barreneche C, Navarro ME, et al. Thermal energy storage technologies for concentrated solar power—A review from a materials perspective. Renew Energy 2020; 156: 1244-1265. [Article] [CrossRef] [Google Scholar]
  • Behabtu HA, Messagie M, Coosemans T, et al. A review of energy storage technologies’ application potentials in renewable energy sources grid integration. Sustainability 2020; 12: 10511. [Article] [CrossRef] [Google Scholar]
  • Kebede AA, Kalogiannis T, Van Mierlo J, et al. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sustain Energy Rev 2022; 159: 112213. [Article] [CrossRef] [Google Scholar]
  • Wang Z, Carriveau R, Ting DS, et al. A review of marine renewable energy storage. Int J Energy Res 2019; 43: 6108-6150. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hunt JD, Zakeri B, de Barros AG, et al. Buoyancy energy storage technology: An energy storage solution for islands, coastal regions, offshore wind power and hydrogen compression. J Energy Storage 2021; 40: 102746. [Article] [CrossRef] [Google Scholar]
  • Arbabzadeh M, Sioshansi R, Johnson JX, et al. The role of energy storage in deep decarbonization of electricity production. Nat Commun 2019; 10: 3413. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Song D, Liu Y, Qin T, et al. Overview of the policy instruments for renewable energy development in China. Energies 2022; 15: 6513. [Article] [CrossRef] [Google Scholar]
  • Liu Q, Niu J, Sivakumar B, et al. Accessing future crop yield and crop water productivity over the Heihe River basin in northwest China under a changing climate. Geosci Lett 2021; 8: 2. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Godfray HCJ, Pretty J, Thomas SM, et al. Linking policy on climate and food. Science 2011; 331: 1013-1014. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu Y, Li N, Zhang Z, et al. The central trend in crop yields under climate change in China: A systematic review. Sci Total Environ 2020; 704: 135355. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu S, Mo X, Lin Z, et al. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agric Water Manage 2010; 97: 1195-1209. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wei T, Cherry TL, Glomrød S, et al. Climate change impacts on crop yield: Evidence from China. Sci Total Environ 2014; 499: 133-140. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu Z, Yang X, Hubbard KG, et al. Maize potential yields and yield gaps in the changing climate of northeast China. Glob Change Biol 2012; 18: 3441-3454. [Article] [Google Scholar]
  • Xiong W, Holman IP, You L, et al. Impacts of observed growing-season warming trends since 1980 on crop yields in China. Reg Environ Change 2014; 14: 7-16. [Article] [CrossRef] [Google Scholar]
  • Zhang Z, Song X, Tao F, et al. Climate trends and crop production in China at county scale, 1980 to 2008. Theor Appl Climatol 2016; 123: 291-302. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wu D, Wang P, Jiang C, et al. Measured phenology response of unchanged crop varieties to long-term historical climate change. Int J Plant Prod 2019; 13: 47-58. [Article] [CrossRef] [Google Scholar]
  • He L, Asseng S, Zhao G, et al. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteor 2015; 200: 135-143. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jiang J, Zhang J. National assessment report of climate change (II): Climate change impacts and adaptation (in Chinese). Adv Climate Change Res 2006; 2: 51–56 [Google Scholar]
  • Ji RP, Che YS, Zhu YN, et al. Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China. Yingyong Shengtai Xuebao 2012; 23: 3021–3026 [Google Scholar]
  • Yang X, Chen F, Lin X, et al. Potential benefits of climate change for crop productivity in China. Agric For Meteor 2015; 208: 76-84. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen S, Gong B. Response and adaptation of agriculture to climate change: Evidence from China. J Dev Economics 2021; 148: 102557. [Article] [CrossRef] [Google Scholar]
  • Chen Y, Zhang Z, Tao F. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C. Earth Syst Dynam 2018; 9: 543-562. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou M, Wang H. Potential impact of future climate change on crop yield in northeastern China. Adv Atmos Sci 2015; 32: 889-897. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang D, Shen J, Zhang F, et al. Carbon footprint of grain production in China. Sci Rep 2017; 7: 4126. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Bai H, Xiao D, Wang B, et al. Multi-model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China plain. Intl J Climatology 2021; 41: E171-E186. [Article] [Google Scholar]
  • Qin Z, Tang H, Li W, et al. Modelling impact of agro-drought on grain production in China. Int J Disaster Risk Reduction 2014; 7: 109-121. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen H, Liang Q, Liang Z, et al. Remote-sensing disturbance detection index to identify spatio-temporal varying flood impact on crop production. Agric For Meteor 2019; 269-270: 180-191. [Article] [CrossRef] [Google Scholar]
  • Fu J, Jian Y, Wang X, et al. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nat Food 2023; 4: 416-426. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu X, Liu T, Xu K, et al. The impact of high temperature and drought stress on the yield of major staple crops in northern China. J Environ Manage 2022; 314: 115092. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang L, Pang J, Chen X, et al. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci Total Environ 2019; 665: 1017-1025. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Kang S, Eltahir EAB. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat Commun 2018; 9: 2894. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang C, Dong J, Ge Q. Mapping 20 years of irrigated croplands in China using MODIS and statistics and existing irrigation products. Sci Data 2022; 9: 407. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wu P, Jin J, Zhao X. Impact of climate change and irrigation technology advancement on agricultural water use in China. Climatic Change 2010; 100: 797-805. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mo XG, Hu S, Lin ZH, et al. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv Clim Change Res 2017; 8: 93-98. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xiao D, Liu DL, Wang B, et al. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric Water Manage 2020; 238: 106238. [Article] [CrossRef] [Google Scholar]
  • Zhang L, Chu Q, Jiang Y, et al. Impacts of climate change on drought risk of winter wheat in the North China Plain. J Integrative Agr 2021; 20: 2601-2612. [Article] [CrossRef] [Google Scholar]
  • Shen Y, Li S, Chen Y, et al. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agric Water Manage 2013; 128: 55-64. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zou M, Kang S, Niu J, et al. Untangling the effects of future climate change and human activity on evapotranspiration in the Heihe agricultural region, Northwest China. J Hydrol 2020; 585: 124323. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Guo Y, Shen Y. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. J Hydrol 2016; 540: 257-273. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yan T, Wang J, Huang J, et al. The impacts of climate change on irrigation and crop production in Northeast China and implications for energy use and GHG Emission. Proc IAHS 2018; 379: 301-311. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Huang Z, Wang X, Xiao Y, et al. Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China. Ying Yong Sheng Tai Xue Bao 2015; 26: 260–268 [PubMed] [Google Scholar]
  • Wu C, Xian Z, Huang G. Meteorological drought in the Beijiang River basin, South China: Current observations and future projections. Stoch Environ Res Risk Assess 2016; 30: 1821-1834. [Article] [CrossRef] [Google Scholar]
  • Wang Z, Zhong R, Lai C, et al. Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agric For Meteor 2018; 249: 149-162. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liang Y, Wang Y, Zhao Y, et al. Analysis and projection of flood hazards over China. Water 2019; 11: 1022. [Article] [CrossRef] [Google Scholar]
  • Wang L, Yang Z, Gu X, et al. Linkages between tropical cyclones and extreme precipitation over China and the role of ENSO. Int J Disaster Risk Sci 2020; 11: 538-553. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Huang Z, Li D, Yang J, et al. The demonstration representation of Huhanyou No. 3 in Guangxi. J Guangxi Agric 2008; 23: 36–38 [Google Scholar]
  • Yao F, Huang J, Cui K, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res 2012; 126: 16-22. [Article] [CrossRef] [Google Scholar]
  • Law CN, Jenkins G. A genetic study of cold resistance in wheat. Genet Res 1970; 15: 197-208. [Article] [CrossRef] [Google Scholar]
  • Wang J, Wang E, Yin H, et al. Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agric For Meteor 2014; 195-196: 89-101. [Article] [CrossRef] [Google Scholar]
  • Donatelli M, Magarey RD, Bregaglio S, et al. Modelling the impacts of pests and diseases on agricultural systems. Agric Syst 2017; 155: 213-224. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang J, Mendelsohn R, Dinar A, et al. How Chinese farmers change crop choice to adapt to climate change. Clim Chang Econ (Singap) 2010; 1: 167–185 [CrossRef] [Google Scholar]
  • Beveridge L, Whitfield S, Challinor A. Crop modelling: Towards locally relevant and climate-informed adaptation. Climatic Change 2018; 147: 475-489. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lv Z, Li F, Lu G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig Adapt Strateg Glob Change 2020; 25: 87-106. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sun H, Zhang X, Chen S, et al. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Industrial Crops Products 2007; 25: 239-247. [Article] [CrossRef] [Google Scholar]
  • Li Z, Liu Z, Anderson W, et al. Chinese rice production area adaptations to climate changes, 1949–2010. Environ Sci Technol 2015; 49: 2032-2037. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Challinor AJ, Watson J, Lobell DB, et al. A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 2014; 4: 287-291. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Asseng S, Martre P, Maiorano A, et al. Climate change impact and adaptation for wheat protein. Glob Change Biol 2019; 25: 155-173. [Article] [Google Scholar]
  • Abid M, Scheffran J, Schneider UA, et al. Farmer perceptions of climate change, observed trends and adaptation of agriculture in pakistan. Environ Manage 2019; 63: 110-123. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Bedeke S, Vanhove W, Gezahegn M, et al. Adoption of climate change adaptation strategies by maize-dependent smallholders in Ethiopia. NJAS-Wageningen J Life Sci 2019; 88: 96-104. [Article] [CrossRef] [Google Scholar]
  • Sloat LL, Davis SJ, Gerber JS, et al. Climate adaptation by crop migration. Nat Commun 2020; 11: 1243. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Li S, Liang H, et al. Comparison of water- and nitrogen-use efficiency over drip irrigation with border irrigation based on a model approach. Agronomy 2020; 10: 1890. [Article] [CrossRef] [Google Scholar]
  • Saddique Q, Cai H, Xu J, et al. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitig Adapt Strateg Glob Change 2020; 25: 1523-1543. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zou X, Li Y, Gao Q, et al. How water saving irrigation contributes to climate change resilience—A case study of practices in China. Mitig Adapt Strateg Glob Change 2012; 17: 111-132. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ju H, Conway D, Li Y, et al. Impacts of Climate Change on Chinese Agriculture—Phase II. University of East Anglia, 2008 [Google Scholar]
  • Cremades R, Wang J, Morris J. Policies, economic incentives and the adoption of modern irrigation technology in China. Earth Syst Dynam 2015; 6: 399-410. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • McEvoy J, Wilder M. Discourse and desalination: Potential impacts of proposed climate change adaptation interventions in the Arizona-Sonora border region. Glob Environ Change 2012; 22: 353-363. [Article] [CrossRef] [Google Scholar]
  • Ates S, Isik S, Keles G, et al. Evaluation of deficit irrigation for efficient sheep production from permanent sown pastures in a dry continental climate. Agric Water Manage 2013; 119: 135-143. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhao Y, Deng H, Hu R, et al. Impact of government policies on seed innovation in China. Agronomy 2022; 12: 917. [Article] [CrossRef] [Google Scholar]
  • Tang S, Wang Y, Hui X. An empirical study of agricultural insurance—Evidence from China. Agr Agric Sci Procedia 2010; 1: 62-66. [Article] [Google Scholar]
  • Huang X, Xu X, Wang Q, et al. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. Int J Environ Res Public Health 2019; 16: 3105. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tian Y, Zhang J, He Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J Integrative Agr 2014; 13: 1393-1403. [Article] [CrossRef] [Google Scholar]
  • Sun Y, Yang C, Wang M, et al. Carbon emission measurement and influencing factors of China’s beef cattle industry from a whole industry chain perspective. Sustainability 2022; 14: 15554. [Article] [CrossRef] [Google Scholar]
  • Wei Y, Zhang X, Xu M, et al. Greenhouse gas emissions of meat products in China: A provincial-level quantification. Resources Conservation Recycling 2023; 190: 106843. [Article] [CrossRef] [Google Scholar]
  • Lin L, Yanju S, Ying X, et al. Comparing rice production systems in China: Economic output and carbon footprint. Sci Total Environ 2021; 791: 147890. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Xue Y, Luan W, Wang H, et al. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: Case study of pig farming in Liaoning, China. J Cleaner Production 2019; 238: 117968. [Article] [CrossRef] [Google Scholar]
  • NBS (National Bureau of Statistics). China Statistical Yearbook 2018. Beijing: China Statistics Press, 2018 [Google Scholar]
  • Deng LP. Temporal and spatial differences and evolution patterns of agricultural carbon emissions in China. Dissertation for Master Degree. Nanchang: University of Nanchang, 2019 [Google Scholar]
  • FAO. World Food and Agriculture-Statistical Yearbook. Rome, 2023 [Google Scholar]
  • Hannah R, Pablo R, Max R. CO2 and Greenhouse Gas Emissions. Global Change Data Lab, 2023 [Google Scholar]
  • Kou TJ, Cheng XH, Zhu JG, et al. The influence of ozone pollution on CO2, CH4, and N2O emissions from a Chinese subtropical rice-wheat rotation system under free-air O3 exposure. Agr EcoSyst Environ 2015; 204: 72-81. [Article] [CrossRef] [Google Scholar]
  • Chen S, Liu T, Cao C, et al. Current situation of carbon neutrality in rice production and technical strategy of low carbon rice cultivation. J Huazhong Agricult Univ 2021; 40: 10 [Google Scholar]
  • Mosier AR, Duxbury JM, Freney JR, et al. Assessing and mitigating N2O emissions from agricultural soils. Climatic Change 1998; 40: 7-38. [Article] [CrossRef] [Google Scholar]
  • International Fertilizer Association (IFA). Public Medium-Term Fertilizer Outlook 2021–2025. Paris: International Fertilizer Association, 2021 [Google Scholar]
  • Zhang X, Wu L, Ma X, et al. Dynamic computable general equilibrium simulation of agricultural greenhouse gas emissions in China. J Cleaner Production 2022; 345: 131122. [Article] [CrossRef] [Google Scholar]
  • Zou X, Li Y’, Li K, et al. Greenhouse gas emissions from agricultural irrigation in China. Mitig Adapt Strateg Glob Change 2015; 20: 295-315. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Na R, Dong H, Zhu Z, et al. Effects of forage type and dietary concentrate to forage ratio on methane emissions and rumen fermentati. Trans ASABE 2013; 56: 1115–1122 [Google Scholar]
  • Lillis L, Boots B, Kenny DA, et al. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J Appl Microbiol 2011; 111: 1426-1435. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu Z, Dong H, Shang B, et al. Large-scale pig farm solid fecal collection coefficient and composition determination. J Agric Eng 2006; 22: 179–182 [Google Scholar]
  • Feng J, Chen C, Zhang Y, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agr EcoSyst Environ 2013; 164: 220-228. [Article] [CrossRef] [Google Scholar]
  • Zhang HL, Bai XL, Xue JF, et al. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China. PLoS ONE 2013; 8: e65277. [Article] [Google Scholar]
  • Jiang Y, Qian H, Wang L, et al. Limited potential of harvest index improvement to reduce methane emissions from rice paddies. Glob Change Biol 2019; 25: 686-698. [Article] [Google Scholar]
  • Lu WF, Chen W, Duan BW, et al. Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutrient Cycling AgroecoSyst 2000; 58: 65-73. [Article] [CrossRef] [Google Scholar]
  • Li X, Ma J, Xu H, et al. Effects of water management on seasonal variation of CH4 and N2O emissions during rice growth period. J Agro-Environ Sci 2008; 27: 535–541 [Google Scholar]
  • Yan X, Wang L, Jiang Y, et al. Characteristics of CH4 emission from main super rice in the Yangtze River Delta and its relationship with plant growth characteristics. Chin J Appl Ecol 2014; 24: 2518–2524 [Google Scholar]
  • Ren F, Zhang X, Liu J, et al. A synthetic analysis of greenhouse gas emissions from manure amended agricultural soils in China. Sci Rep 2017; 7: 8123. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Akiyama H, Yan X, Yagi K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob Change Biol 2010; 16: 1837-1846. [Article] [Google Scholar]
  • Wang S, Xia G, Zheng J, et al. Mulched drip irrigation and biochar application reduce gaseous nitrogen emissions, but increase nitrogen uptake and peanut yield. Sci Total Environ 2022; 830: 154753. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu Z, Ying H, Chen M, et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat Food 2021; 2: 426-433. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Liu Y, Ruiz-Menjivar J, Zhang L, et al. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J Cleaner Production 2019; 226: 454-462. [Article] [CrossRef] [Google Scholar]
  • Liu Q, Chen Y, Li W, et al. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China. Sci Rep 2016; 6: 28150. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhai L, Liu H, Zhang J, et al. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agric Sci China 2011; 10: 1748-1757. [Article] [CrossRef] [Google Scholar]
  • Chang N, Zhai Z, Li H, et al. Impacts of nitrogen management and organic matter application on nitrous oxide emissions and soil organic carbon from spring maize fields in the North China Plain. Soil Tillage Res 2020; 196: 104441. [Article] [CrossRef] [Google Scholar]
  • Bera T, Vardanyan L, Inglett KS, et al. Influence of select bioenergy by-products on soil carbon and microbial activity: A laboratory study. Sci Total Environ 2019; 653: 1354-1363. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Mandal S, Sarkar B, Bolan N, et al. Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Crit Rev Environ Sci Tech 2016; 46: 1367-1401. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Purakayastha TJ, Bera T, Bhaduri D, et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019; 227: 345-365. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gorjian S, Ebadi H, Trommsdorff M, et al. The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations. J Cleaner Production 2021; 292: 126030. [Article] [CrossRef] [Google Scholar]
  • Tao F, Palosuo T, Valkama E, et al. Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil Tillage Res 2019; 186: 70-78. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob Change Biol 2009; 15: 281-305. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Berhane M, Xu M, Liang Z, et al. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob Change Biol 2020; 26: 2686-2701. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang H, Lal R, Zhao X, et al. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Adv Agr 2014; 124: 1–36 [CrossRef] [Google Scholar]
  • Wei S, Zhu Z, Zhao J, et al. Policies and regulations for promoting manure management for sustainable livestock production in China: A review. Front Agr Sci Eng 2021; 8: 45. [Article] [CrossRef] [Google Scholar]
  • Wang J, Huang J, Rozelle S. Climate change and China’s agricultural sector: An overview of impacts, adaptation and mitigation. International Food & Agricultural Trade Policy Council, 2010 [Google Scholar]
  • Ding YJ, Li CY, Wang X, et al. An overview of climate change impacts on the society in China. Adv Clim Change Res 2021; 12: 210-223. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen X, Yang L. Temperature and industrial output: Firm-level evidence from China. J Environ Economics Manage 2019; 95: 257-274. [Article] [CrossRef] [Google Scholar]
  • Zhang P, Deschenes O, Meng K, et al. Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants. J Environ Economics Manage 2018; 88: 1-17. [Article] [CrossRef] [Google Scholar]
  • Yang L, Shi J, Chen X. The effect of temperature changes on China’s industrial production and mechanism analysis. Ecnomicis 2020; 5: 299–320 [Google Scholar]
  • Sun Y, Yang Y, Huang N, et al. The impacts of climate change risks on financial performance of mining industry: Evidence from listed companies in China. Resources Policy 2020; 69: 101828. [Article] [CrossRef] [Google Scholar]
  • Donaghy KP, Balta-Ozkan N, Hewings GJD. Modeling unexpected events in temporally disaggregated econometric input-output models of regional economies. Economic Syst Res 2007; 19: 125-145. [Article] [CrossRef] [Google Scholar]
  • Kurth M, Kozlowski W, Ganin A, et al. Lack of resilience in transportation networks: Economic implications. Transp Res Part D-Transp Environ 2020; 86: 102419. [Article] [CrossRef] [Google Scholar]
  • Thieken AH, Bessel T, Kienzler S, et al. The flood of June 2013 in Germany: How much do we know about its impacts?. Nat Hazards Earth Syst Sci 2016; 16: 1519-1540. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gao G, Wang K, Zhang C, et al. Synergistic effects of environmental regulations on carbon productivity growth in China’s major industrial sectors. Nat Hazards 2019; 95: 55-72. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ma G, Cai J, Zeng W, et al. Analytical research on waste heat recovery and utilization of China’s iron & steel industry. Energy Procedia 2012; 14: 1022-1028. [Article] [CrossRef] [Google Scholar]
  • NBS (National Bureau of Statistics). China Statistical Yearbook 2020. Beijing: China Statistics Press, 2020 [Google Scholar]
  • Zhang H, Wang H, Zhu X, et al. A review of waste heat recovery technologies towards molten slag in steel industry. Appl Energy 2013; 112: 956-966. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang G, Zhang Y, Wu T, et al. Analysis of organic rankine cycle power generation technology for steel slag heat recovery (in Chinese). Metallurgical Energy 2021; 40: 9–12 [Google Scholar]
  • Wang X, Hu L, Liu Y, et al. Analysis on utilization of waste heat from blast furnace slag water (in Chinese). Energy Saving Environ Prot 2014; 8: 66–67 [Google Scholar]
  • Sun Y, Zhang Z, Liu L, et al. Heat recovery from high temperature slags: A review of chemical methods. Energies 2015; 8: 1917-1935. [Article] [CrossRef] [Google Scholar]
  • Sun Y, Liu Q, Wang H, et al. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat. Bioresource Tech 2017; 223: 1-9. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhao A. Research on intelligent batching decision model of 90t arc furnace scrap in a factory. Dissertation for Master Degree. Huaian: Anhui University of Technology, 2020 [Google Scholar]
  • Zhang Q, Xu J, Wang Y, et al. Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows. Appl Energy 2018; 209: 251-265. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • The World Steel Association. World Steel Statistical Yearbook 2020. Brussels: The World Steel Association, 2020 [Google Scholar]
  • Nucor Corporation. Our Greenhouse Gas Reduction Target Strategy. Nucor Corporation, 2021 [Google Scholar]
  • International Energy Agency. Iron and Steel Technology Roadmap. Paris: IEA, 2020 [Google Scholar]
  • Lin Y, Yang H, Ma L, et al. Low-carbon development for the iron and steel industry in china and the world: Status quo, future vision, and key actions. Sustainability 2021; 13: 12548. [Article] [CrossRef] [Google Scholar]
  • China Iron and Steel Association. China Steel Yearbook 2019. Beijing: China Iron and Steel Association, 2019 [Google Scholar]
  • Zhao J, Zuo H, Wang Y, et al. Review of green and low-carbon ironmaking technology. Ironmaking Steelmaking 2020; 47: 296-306. [Article] [CrossRef] [Google Scholar]
  • Anyashiki T, Fukada K, Fujimoto H. Development of carbon iron composite process. JFE Tech Rep 2009; 13: 1–6 [Google Scholar]
  • Chu M. Principle on using carbon iron composite as blast furnace burden. Iron Steel 2015; 50: 9–18 [Google Scholar]
  • Higuchi K, Nomura S, Kunitomo K, et al. Enhancement of low-temperature gasification and reduction by using iron-coke in laboratory scale tests. ISIJ Int 2011; 51: 1308-1315. [Article] [CrossRef] [Google Scholar]
  • Wang H, Chu M, Bao J. Research on preparation and application for a new burden of iron-carbon agglomerate for low carbon BF ironmaking. J Iron Steel Res 2019; 31: 103–111 [Google Scholar]
  • He X, Zeng X, Zhang D, et al. Development of new materials for blast furnace blowing. Fuel Chem Processes 2015; 42: 12–14 [Google Scholar]
  • Kim JY, Han K, Ahn CK, et al. Operating cost for CO2 capture process using aqueous ammonia. Energy Procedia 2013; 37: 677-682. [Article] [CrossRef] [Google Scholar]
  • Tian B. Research and practice on low carbon smelting technology of hydrogen—rich carbon cycle blast furnace at bayi steel. Xinjiang Iron Steel 2021; 4: 1–3 [Google Scholar]
  • The Energy Transitions Commission. China 2050: A fully developed rich zero-carbon economy. 2020, [Article] [Google Scholar]
  • Wei M, McMillan CA, de la Rue du Can S. Electrification of industry: Potential, challenges and outlook. Curr Sustain Renew Energy Rep 2019; 6: 140-148. [Article] [Google Scholar]
  • Sorknæs P, Johannsen RM, Korberg AD, et al. Electrification of the industrial sector in 100% renewable energy scenarios. Energy 2022; 254: 124339. [Article] [CrossRef] [Google Scholar]
  • Meng L, Sager J. Energy consumption and energy-related CO2 emissions from China’s petrochemical industry based on an environmental input-output life cycle assessment. Energies 2017; 10: 1585. [Article] [CrossRef] [Google Scholar]
  • Yang XJ, Hu H, Tan T, et al. China’s renewable energy goals by 2050. Environ Dev 2016; 20: 83-90. [Article] [CrossRef] [Google Scholar]
  • Jahanshahi S, Deev A, Haque N, et al. Recent progress in R&D on use sustainable biomass/designer chars for steel production. In: Proceedings of the Innovation of Ironmaking Technologies and Future International Collaboration to Overcome Energy & Resource Restrictions in Accordance with Environments. Tokyo, 2014 [Google Scholar]
  • Mousa E, Wang C, Riesbeck J, et al. Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renew Sustain Energy Rev 2016; 65: 1247-1266. [Article] [CrossRef] [Google Scholar]
  • Suopajärvi H, Umeki K, Mousa E, et al. Use of biomass in integrated steelmaking—Status quo, future needs and comparison to other low-CO2 steel production technologies. Appl Energy 2018; 213: 384-407. [Article] [CrossRef] [Google Scholar]
  • Gielen D, Saygin D, Taibi E, et al. Renewables-based decarbonization and relocation of iron and steel making: A case study. J Industrial Ecol 2020; 24: 1113-1125. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Flores-Granobles M, Saeys M. Minimizing CO2 emissions with renewable energy: A comparative study of emerging technologies in the steel industry. Energy Environ Sci 2020; 13: 1923-1932. [Article] [CrossRef] [Google Scholar]
  • Chalk S, Snyder SW. Sustainable, net-zero carbon steelmaking utilizing nuclear and renewable-based integrated energy systems. Idaho National Lab (INL), Idaho Falls, 2021 [Google Scholar]
  • Xu K. Low carbon economy and iron and steel industry. Kang T’ieh/Iron and Steel (Peking), 2010; 45: 1–12 [Google Scholar]
  • Amirante R, Cassone E, Distaso E, et al. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers Manage 2017; 132: 372-387. [Article] [CrossRef] [Google Scholar]
  • Dawood F, Anda M, Shafiullah GM. Hydrogen production for energy: An overview. Int J Hydrogen Energy 2020; 45: 3847-3869. [Article] [CrossRef] [Google Scholar]
  • Parra D, Valverde L, Pino FJ, et al. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew Sustain Energy Rev 2019; 101: 279-294. [Article] [CrossRef] [Google Scholar]
  • Pudukudy M, Yaakob Z, Mohammad M, et al. Renewable hydrogen economy in Asia—Opportunities and challenges: An overview. Renew Sustain Energy Rev 2014; 30: 743-757. [Article] [CrossRef] [Google Scholar]
  • Yang X, Nielsen CP, Song S, et al. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat Energy 2022; 7: 955-965. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Shatokha V. Modeling of the effect of hydrogen injection on blast furnace operation and carbon dioxide emissions. Int J Miner Metall Mater 2022; 29: 1851-1861. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Feng C, Zhu R, Wei G, et al. Typical case of carbon capture and utilization in Chinese iron and steel enterprises: CO2 emission analysis. J Cleaner Production 2022; 363: 132528. [Article] [CrossRef] [Google Scholar]
  • Wen Q, Bu X. Development Trend and Prospect of Global Hydrogen Metallurgy. Report. Mi Si Tuo, 2020 [Google Scholar]
  • Yu P, Zheng J, Wang J, et al. Application and trend of hydrogen in steel production (in Chinese). Heilongjiang Sci Tech Inf 2019; 29: 152–154 [Google Scholar]
  • Sang S, Liu S, Lu S, et al. Engineered full flowsheet technology of CCUS and Tts research progress. Pet Reserv Eval Dev 2022; 12: 711–725, 733 [Google Scholar]
  • Nie L, Jiang D, Li XC. Relationship between CCUS technology and low carbon development of China coal based energy. Coal Econ Res 2015; 35: 16–20 [Google Scholar]
  • Zhang X. The application prospect of CCUS in China under the target of carbon neutrality. China Sustain Trib 2020; 12: 22–24 [Google Scholar]
  • Osman AI, Hefny M, Abdel Maksoud MIA, et al. Recent advances in carbon capture storage and utilisation technologies: A review. Environ Chem Lett 2021; 19: 797-849. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yoro KO, Daramola MO, Sekoai PT, et al. Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies. Renew Sustain Energy Rev 2021; 147: 111241. [Article] [CrossRef] [Google Scholar]
  • Baosteel Central Stock Research Institute. Steel Green Low Carbon and CCUS Practice of Baosteel. Beijing: Baosteel Central stock Research Institute, 2018 [Google Scholar]
  • Ministry of Ecology and Environment of the People’s Republic of China. Annual Report of Carbon Dioxide Capture, Utilization and Storage (CCUS) in China. Beijing, 2019 [Google Scholar]
  • Yang Y, Xu W, Wang Y, et al. Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China. Chem Eng J 2022; 450: 138438. [Article] [CrossRef] [Google Scholar]
  • Chao C, Deng Y, Dewil R, et al. Post-combustion carbon capture. Renew Sustain Energy Rev 2021; 138: 110490. [Article] [CrossRef] [Google Scholar]
  • Gao W, Liang S, Wang R, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem Soc Rev 2020; 49: 8584-8686. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yao J, Han H, Yang Y, et al. A review of recent progress of carbon capture, utilization, and storage (CCUS) in China. Appl Sci 2023; 13: 1169. [Article] [CrossRef] [Google Scholar]
  • Duarah P, Haldar D, Yadav V, et al. Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects. J Environ Chem Eng 2021; 9: 106394. [Article] [CrossRef] [Google Scholar]
  • Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020; 581: 178-183. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Jeffry L, Ong MY, Nomanbhay S, et al. Greenhouse gases utilization: A review. Fuel 2021; 301: 121017. [Article] [CrossRef] [Google Scholar]
  • Bo Y, Gao C, Xiong Y. Recent advances in engineering active sites for photocatalytic CO2 reduction. Nanoscale 2020; 12: 12196-12209. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Razzak SA, Ali SAM, Hossain MM, et al. Biological CO2 fixation with production of microalgae in wastewater—A review. Renew Sustain Energy Rev 2017; 76: 379-390. [Article] [CrossRef] [Google Scholar]
  • Seyed Hosseini N, Shang H, Scott JA. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renew Sustain Energy Rev 2018; 92: 458-469. [Article] [CrossRef] [Google Scholar]
  • Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: High value products perspectives. Bioresource Tech 2017; 229: 53-62. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chi Z, O’Fallon JV, Chen S. Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 2011; 29: 537-541. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ministry of Ecology and Environment of the People’s Republic of China. Annual Report of Carbon Dioxide Capture, Utilization and Storage (CCUS) in China. Beijing, 2021 [Google Scholar]
  • Ministry of Ecology and Environment of the People’s Republic of China. China’s Policies and Actions on Climate Change. Beijing, 2022 [Google Scholar]
  • Li Z, Chen S, Dong W, et al. Feasible and affordable pathways to low-carbon power transition in China. Clean Coal Technol 2021; 27: 1–7 [Google Scholar]
  • Wang C, Cong J, Wang K, et al. Research on China’s technology lists for addressing climate change. Chin J Popul Res Environ 2021; 19: 151–161 [NASA ADS] [Google Scholar]
  • Wang Y, Liu J, Tang X, et al. Decarbonization pathways of China’s iron and steel industry toward carbon neutrality. Res Conser Recycl 2023; [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.