Open Access
Review
Issue |
Natl Sci Open
Volume 3, Number 4, 2024
|
|
---|---|---|
Article Number | 20230029 | |
Number of page(s) | 36 | |
Section | Information Sciences | |
DOI | https://doi.org/10.1360/nso/20230029 | |
Published online | 15 December 2023 |
- Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948; 27: 379-423. [Article] [CrossRef] [Google Scholar]
- Wang Y, Gao Z, Zheng D, et al. Transformer-empowered 6G intelligent networks: From massive MIMO processing to semantic communication. IEEE Wireless Commun 2022; 30: 127-135. [Article] [Google Scholar]
- Uysal E, Kaya O, Ephremides A, et al. Semantic communications in networked systems: A data significance perspective. IEEE Network 2022; 36: 233-240. [Article] [CrossRef] [Google Scholar]
- Shannon CE, Weaver W. The Mathematical Theory of Communication. Champaign: University of Illinois Press, 1949 [Google Scholar]
- Zhong Y. A theory of semantic information. China Commun 2017; 14: 1-17. [Article] [Google Scholar]
- Morris CW. Foundations of the theory of signs. In: International Encyclopedia of Unified Science. Chicago: Chicago University Press, 1938. 1-59 [Google Scholar]
- Carnap R, Bar-Hillel Y. An outline of a theory of semantic information. RLE Technical Reports 247, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, 1952 [Google Scholar]
- Bar-hillel Y, Carnap R. Semantic information. Br J Philosophy Sci 1953; 4: 147-157. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Barwise J, Perry J. Situations and attitudes. J Philosophy 1981; 78: 668-691. [Article] [CrossRef] [Google Scholar]
- D’Alfonso S. On quantifying semantic information. Information 2011; 2: 61-101. [Article] [CrossRef] [Google Scholar]
- De Luca A, Termini S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Readings in Fuzzy Sets for Intelligent Systems. Morgan Kaufmann, 1993. 197–202 [CrossRef] [Google Scholar]
- Floridi L. Outline of a theory of strongly semantic information. Minds Machines 2004; 14: 197-221. [Article] [Google Scholar]
- Zhang P, Xu W, Gao H, et al. Toward wisdom-evolutionary and primitive-concise 6G: A new paradigm of semantic communication networks. Engineering 2022; 8: 60-73. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, 2014. 1746-17511408.5882 [CrossRef] [Google Scholar]
- Bengio Y, Ducharme R, Vincent P. A neural probabilistic language model. In: Proceedings of the 13th International Conference on Neural Information Processing Systems. Denver, 2000. 932–938 [Google Scholar]
- Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, 2017. 5998–6008 [Google Scholar]
- Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training. OpenAI blog, 2018. https://openai.com/index/language-unsupervised/ [Google Scholar]
- Devlin J, Chang MW, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv: 1810.048051810.04805 [Google Scholar]
- Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis 2015; 115: 211-252. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process 2017; 26: 4843-4855 [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Yang W, Du H, Liew ZQ, et al. Semantic communications for future internet: fundamentals, applications, and challenges. IEEE Commun Surv Tutorials 2023; 25: 213-250. [Article] [CrossRef] [Google Scholar]
- Lan Q, Wen D, Zhang Z, et al. What is semantic communication? A view on conveying meaning in the era of machine intelligence. J Commun Inf Netw 2021; 6: 336-371. [Article] [CrossRef] [Google Scholar]
- Qin Z, Tao X, Lu J, et al. Semantic communications: Principles and challenges. arXiv: 2201.013892201.01389 [Google Scholar]
- Iyer S, Khanai R, Torse D, et al. A survey on semantic communications for intelligent wireless networks. Wireless Pers Commun 2023; 129: 569-611. [Article] [CrossRef] [Google Scholar]
- Lu Z, Li R, Lu K, et al. Semantics-empowered communication: A tutorial-cum-survey. IEEE Commun Surv Tutorials 2024; 129: 4179. [CrossRef] [Google Scholar]
- Liu Y, Wang X, Ning Z, et al. A survey on semantic communications: Technologies, solutions, applications and challenges. Digital Commun Networks 2023; [Article] [Google Scholar]
- Getu TM, Kaddoum G, Bennis M. Tutorial-cum-survey on semantic and goal-oriented communication: Research landscape, challenges, and future directions. arXiv: 2308.019132308.01913 [Google Scholar]
- Li K, Lau BPL, Yuan X, et al. Toward ubiquitous semantic metaverse: challenges, approaches, and opportunities. IEEE Internet Things J 2023; 10: 21855-21872. [Article] [CrossRef] [Google Scholar]
- Shi G, Xiao Y, Li Y, et al. From semantic communication to semantic-aware networking: model, architecture, and open problems. IEEE Commun Mag 2021; 59: 44-50. [Article] [CrossRef] [Google Scholar]
- Choi J, Loke SW, Park J. A unified view on semantic information and communication: A probabilistic logic approach. In: Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops). Seoul: IEEE, 2022. 705–710 [CrossRef] [Google Scholar]
- Liu X, Jia W, Liu W, et al. AFSSE: An interpretable classifier with axiomatic fuzzy set and semantic entropy. IEEE Trans Fuzzy Syst 2019; 28: 2825-2840. [Article] [Google Scholar]
- Kountouris M, Pappas N. Semantics-empowered communication for networked intelligent systems. IEEE Commun Mag 2021; 59: 96-102. [Article] [CrossRef] [Google Scholar]
- Rényi A. On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Volume 1: Contributions to the Theory of Statistics. Oakland: University of California Press, 1961. 4: 547–562 [Google Scholar]
- Liu J, Zhang W, Poor HV. A rate-distortion framework for characterizing semantic information. In: Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT). Melbourne: IEEE, 2021. 2894–2899 [CrossRef] [Google Scholar]
- Sun Y, Chen H, Xu X, et al. Semantic knowledge base-enabled zero-shot multi-level feature transmission optimization. IEEE Trans Wireless Commun 2023; 23: 4904-4917. [Article] [Google Scholar]
- Sun Y, Zhang J, Yu L, et al. How to define the propagation environment semantics and its application in scatterer-based beam prediction. IEEE Wireless Commun Lett 2023; 12: 649-653. [Article] [CrossRef] [Google Scholar]
- Zheng Y, Wang F, Xu W, et al. Semantic communications with explicit semantic base for image transmission. In: Proceedings of the IEEE Global Communications Conference. Kuala Lumpur, 2023. 4497–45022308.06599 [Google Scholar]
- Griffiths TL, Steyvers M. A probabilistic approach to semantic representation. In: Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society. Fairfax, 2002. 381–386 [Google Scholar]
- Hinton GE, Roweis S. Stochastic neighbor embedding. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. Vancouver, 2002. 833–864 [Google Scholar]
- Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Vol. 2. Lake Tahoe, 2013. 3111–3119 [Google Scholar]
- Pennington J, Socher R, Manning CD. Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, 2014. 1532–1543 [CrossRef] [Google Scholar]
- Bojanowski P, Grave E, Joulin A, et al. Enriching word vectors with subword information. TACL 2017; 5: 135-146. [Article] [CrossRef] [Google Scholar]
- Peters ME, Neumann M, Iyyer M, et al. Deep contextualized word representations. arXiv: 1802.053651802.05365 [Google Scholar]
- Farsad N, Rao M, Goldsmith A. Deep learning for joint source-channel coding of text. In: Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary: IEEE, 2018. 2326–2330 [CrossRef] [Google Scholar]
- Xie H, Qin Z. A lite distributed semantic communication system for internet of things. IEEE J Sel Areas Commun 2020; 39: 142-153. [Article] [Google Scholar]
- Zhou Q, Li R, Zhao Z, et al. Semantic communication with adaptive universal transformer. IEEE Wireless Commun Lett 2021; 11: 453-457. [Article] [Google Scholar]
- Liu Y, Jiang S, Zhang Y, et al. Extended context-based semantic communication system for text transmission. Digital Commun Networks 2022; [Article] [Google Scholar]
- Weng Z, Qin Z. Semantic communication systems for speech transmission. IEEE J Sel Areas Commun 2021; 39: 2434-2444. [Article] [CrossRef] [Google Scholar]
- Tong H, Yang Z, Wang S, et al. Federated learning for audio semantic communication. Front Comms Net 2021; 2: 734402. [Article] [CrossRef] [Google Scholar]
- Han T, Yang Q, Shi Z, et al. Semantic-preserved communication system for highly efficient speech transmission. IEEE J Sel Areas Commun 2022; 41: 245-259. [Article] [Google Scholar]
- Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Vol. 1. Lake Tahoe, 2012. [Google Scholar]
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.15561409.1556 [Google Scholar]
- He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016. 770–778 [Google Scholar]
- Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning. Long Beach, 2019. 6105–6114 [Google Scholar]
- Kingma DP, Welling M. Auto-encoding variational bayes. arXiv: 1312.61141312.6114 [Google Scholar]
- Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020; 63: 139–1441406.2661 [CrossRef] [Google Scholar]
- Bourtsoulatze E, Burth Kurka D, Gunduz D. Deep joint source-channel coding for wireless image transmission. IEEE Trans Cogn Commun Netw 2019; 5: 567-579. [Article] [CrossRef] [Google Scholar]
- Yang M, Kim HS. Deep joint source-channel coding for wireless image transmission with adaptive rate control. In: Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. 5193–5197 [CrossRef] [Google Scholar]
- Zhang Z, Yang Q, He S, et al. Wireless transmission of images with the assistance of multi-level semantic information. In: Proceedings of the 2022 International Symposium on Wireless Communication Systems (ISWCS). Hangzhou: IEEE, 2022. 1–6 [Google Scholar]
- Dai J, Wang S, Tan K, et al. Nonlinear transform source-channel coding for semantic communications. IEEE J Sel Areas Commun 2022; 40: 2300-2316. [Article] [CrossRef] [Google Scholar]
- Xie H, Qin Z, Li GY. Task-oriented multi-user semantic communications for VQA. IEEE Wireless Commun Lett 2021; 11: 553-557. [Article] [Google Scholar]
- Xie H, Qin Z, Tao X, et al. Task-oriented multi-user semantic communications. IEEE J Sel Areas Commun 2022; 40: 2584-2597. [Article] [CrossRef] [Google Scholar]
- Zhang G, Hu Q, Qin Z, et al. A unified multi-task semantic communication system for multimodal data. IEEE Trans Commun 2024; doi: 10.1109/TCOMM.2024.33649902209.07689 [Google Scholar]
- Wang S, Yang Q, Shi Z, et al. Cooperative task-oriented communication for multi-modal data with transmission control. In: Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops). Rome, 2023. 1635–16402302.02608 [Google Scholar]
- Bo Y, Duan Y, Shao S, et al. Learning based joint coding-modulation for digital semantic communication systems. In: Proceedings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). Nanjing, 20222208.05704 [Google Scholar]
- Jiang P, Wen CK, Jin S, et al. Deep source-channel coding for sentence semantic transmission with HARQ. IEEE Trans Commun 2022; 70: 5225-5240. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhou Q, Li R, Zhao Z, et al. Adaptive bit rate control in semantic communication with incremental knowledge-based HARQ. IEEE Open J Commun Soc 2022; 3: 1076-1089. [Article] [CrossRef] [Google Scholar]
- Guo J, Wen CK, Jin S. Eliminating CSI feedback overhead via deep learning-based data hiding. IEEE J Sel Areas Commun 2022; 40: 2267-2281. [Article] [CrossRef] [Google Scholar]
- Xu J, Ai B, Wang N, et al. Deep joint source-channel coding for CSI feedback: an end-to-end approach. IEEE J Sel Areas Commun 2022; 41: 260-273. [Article] [Google Scholar]
- Zhang G, Hu Q, Cai Y, et al. Adaptive CSI feedback for deep learning-enabled image transmission. In: Proceedings of the IEEE International Conference on Communications. Rome, 2023. 4163–41682302.13477 [Google Scholar]
- Yan L, Qin Z, Zhang R, et al. Resource allocation for text semantic communications. IEEE Wireless Commun Lett 2022; 11: 1394-1398. [Article] [CrossRef] [Google Scholar]
- Yan L, Qin Z, Zhang R, et al. QoE-aware resource allocation for semantic communication networks. In: Proceedings of the GLOBECOM 2022-2022 IEEE Global Communications Conference. Rio de Janeiro: IEEE, 2022. 3272–3277 [CrossRef] [Google Scholar]
- Wang Y, Chen M, Saad W, et al. Performance optimization for semantic communications: an attention-based learning approach. In: Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM). Madrid: IEEE, 2021. 1–6 [Google Scholar]
- Liu C, Guo C, Yang Y, et al. Adaptable semantic compression and resource allocation for task-oriented communications. IEEE Trans Cogn Commun Netw 2024; 10: 769–7822204.08910 [CrossRef] [Google Scholar]
- Liu C, Guo C, Yang Y, et al. Bandwidth and power allocation for task-oriented semantic communication. arXiv: 2201.107952201.10795 [Google Scholar]
- Kang J, Du H, Li Z, et al. Personalized saliency in task-oriented semantic communications: Image transmission and performance analysis. IEEE J Sel Areas Commun 2022; 41: 186-201. [Article] [Google Scholar]
- Xia L, Sun Y, Li X, et al. Wireless resource management in intelligent semantic communication networks. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). New York, 20222202.07632 [Google Scholar]
- Zhang W, Wang Y, Chen M, et al. Optimization of image transmission in cooperative semantic communication networks. IEEE Trans Wireless Commun 2024; 23: 861–8732301.00433 [Google Scholar]
- Yang Z, Chen M, Zhang Z, et al. Energy efficient semantic communication over wireless networks with rate splitting. IEEE J Sel Areas Commun 2023; 41: 1484–14952301.01987 [CrossRef] [Google Scholar]
- Zhou F, Li Y, Zhang X, et al. Cognitive semantic communication systems driven by knowledge graph. In: Proceedings of the ICC 2022-IEEE International Conference on Communications. Seoul: IEEE, 2022. 4860–4865 [CrossRef] [Google Scholar]
- Jiang S, Liu Y, Zhang Y, et al. Reliable semantic communication system enabled by knowledge graph. Entropy 2022; 24: 846. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shi G, Gao D, Song X, et al. A new communication paradigm: From bit accuracy to semantic fidelity. arXiv: 2101.126492101.12649 [Google Scholar]
- Xiao Y, Sun Z, Shi G, et al. Imitation learning-based implicit semantic-aware communication networks: Multi-layer representation and collaborative reasoning. IEEE J Sel Areas Commun 2023; 41: 639-658. [Article] [CrossRef] [Google Scholar]
- Klakow D, Peters J. Testing the correlation of word error rate and perplexity. Speech Communication 2002; 38: 19-28. [Article] [CrossRef] [Google Scholar]
- Papineni K, Roukos S, Ward T, et al. Bleu: A method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, 2002. 311–318 [Google Scholar]
- Vincent E, Gribonval R, Fevotte C. Performance measurement in blind audio source separation. IEEE Trans Audio Speech Lang Process 2006; 14: 1462-1469. [Article] [CrossRef] [Google Scholar]
- Rix AW, Beerends JG, Hollier MP, et al. Perceptual evaluation of speech quality (PESQ)—A new method for speech quality assessment of telephone networks and codecs. In: Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, 2001. 749–752 [CrossRef] [Google Scholar]
- Heusel M, Ramsauer H, Unterthiner T, et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, 2017 [Google Scholar]
- Bińkowski M, Sutherland DJ, Arbel M, et al. Demystifying mmd gans. arXiv: 1801.014011801.01401 [Google Scholar]
- ITU-R BS.1534-3. Method for the subjective assessment of intermediate quality level of audio systems. Int Telecommun Union Radiocommun Assembly, Geneva, 2015. https://www.itu.int/rec/R-REC-BS.1534-3-201510-I/en [Google Scholar]
- MeTriX MuX Visual Quality Assessment Package README. Available: http://foulard.ece.cornell.edu/gaubatz/metrix_mux/ [Google Scholar]
- Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 2004; 13: 600-612. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang R, Isola P, Efros AA, et al. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 586–595 [Google Scholar]
- Chen LC, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. arXiv: 1706.055871706.05587 [Google Scholar]
- Seshadrinathan K, Bovik AC. Motion-based perceptual quality assessment of video. In: Proceedings of the Human Vision and Electronic Imaging XIV. San Jose, 2009. 7240: 283–294 [NASA ADS] [Google Scholar]
- Lin JY, Liu TJ, Wu ECH, et al. A fusion-based video quality assessment (FVQA) index. In: Proceedings of the Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific. Siem Reap: IEEE, 2014. 1–5 [Google Scholar]
- Pinson MH, Wolf S. A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 2004; 50: 312-322. [Article] [CrossRef] [Google Scholar]
- Wolf S, Pinson MH. Video quality model for variable frame delay (VQM-VFD). US Dept Commer, Nat Telecommun Inf Admin, Boulder, CO, USA, Tech Memo TM-11-482, 2011 [Google Scholar]
- Liu TJ, Lin YC, Lin W, et al. Visual quality assessment: Recent developments, coding applications and future trends. SIP 2013; 2: e4. [Article] [Google Scholar]
- Kosta A, Pappas N, Angelakis V. Age of information: A new concept, metric, and tool. FNT Networking 2017; 12: 162-259. [Article] [CrossRef] [Google Scholar]
- Soleymani T. Value of Information Analysis in Feedback Control. Dissertation for Doctoral Degree. München: Technische Universität München, 2019 [Google Scholar]
- Shisher MKC, Qin H, Yang L, et al. The age of correlated features in supervised learning based forecasting. In: Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Vancouver: IEEE, 2021. 1–8 [Google Scholar]
- Chen X, Zhao Z, Mao S, et al. Age of semantics in cooperative communications: To expedite simulation towards real via offline reinforcement learning. arXiv: 2209.089472209.08947 [Google Scholar]
- Xie H, Qin Z, Li GY, et al. Deep learning enabled semantic communication systems. IEEE Trans Signal Process 2021; 69: 2663-2675. [Article]arxiv:2006.10685 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Park J, Choi J, Kim SL, et al. Enabling the wireless metaverse via semantic multiverse communication. In: Proceedings of the 2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). Madrid, 2023. 85–902212.06908 [CrossRef] [Google Scholar]
- Zhang P, Xu X, Dong C, et al. Intellicise communication system: Model-driven semantic communications. J China Univ Posts Telecommun 2022; 29: 2–12 [Google Scholar]
- Li A, Wu S, Meng S, et al. Towards goal-oriented semantic communications: New metrics, open challenges, and future research directions. arXiv: 2304.008482304.00848 [Google Scholar]
- Xiao W, Tang Y, Liu J, et al. Semantic-driven efficient service network towards smart healthcare system in intelligent fabric. IEEE Trans Netw Sci Eng 2023; 10: 2480-2489. [Article] [CrossRef] [Google Scholar]
- Li A, Liu X, Wang G, et al. Domain knowledge driven semantic communication for image transmission over wireless channels. IEEE Wireless Commun Lett 2023; 12: 55-59. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Raha AD, Munir MS, Adhikary A, et al. An artificial intelligent-driven semantic communication framework for connected autonomous vehicular network. In: Proceedings of the 2023 International Conference on Information Networking (ICOIN). Bangkok: IEEE, 2023. 352–357 [CrossRef] [Google Scholar]
- Xu W, Zhang Y, Wang F, et al. Semantic communication for the internet of vehicles: A multiuser cooperative approach. IEEE Veh Technol Mag 2023; 18: 100-109. [Article] [CrossRef] [Google Scholar]
- Xia L, Sun Y, Niyato D, et al. xURLLC-aware service provisioning in vehicular networks: A semantic communication perspective. IEEE Trans Wireless Commun 2024; 23: 4475–44882302.11993 [CrossRef] [Google Scholar]
- Su J, Liu Z, Xie Y, et al. Semantic communication-based dynamic resource allocation in D2D vehicular networks. IEEE Trans Veh Technol 2023; 72: 10784-10796. [Article] [CrossRef] [Google Scholar]
- Kang X, Song B, Guo J, et al. Task-oriented image transmission for scene classification in unmanned aerial systems. IEEE Trans Commun 2022; 70: 5181-5192. [Article] [CrossRef] [Google Scholar]
- Yun WJ, Lim B, Jung S, et al. Attention-based reinforcement learning for real-time UAV semantic communication. In: Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS). Berlin: IEEE, 2021. 1–6 [Google Scholar]
- Lu Y, Asghar MR. Semantic communications between distributed cyber-physical systems towards collaborative automation for smart manufacturing. J Manufacturing Syst 2020; 55: 348-359. [Article] [CrossRef] [Google Scholar]
- Wang J, Du H, Tian Z, et al. Semantic-aware sensing information transmission for metaverse: A contest theoretic approach. IEEE Trans Wireless Commun 2023; 22: 5214-5228. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liew ZQ, Du H, Lim W YB, et al. Economics of Semantic Communication in Metaverse: An Auction Approach. In: Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC). Las Vegas: IEEE, 2023. 398–403 [CrossRef] [Google Scholar]
- Huang Y, Bai B, Zhu Y, et al. ISCom: Interest-aware semantic communication scheme for point cloud video streaming. IEEE J Sel Areas Commun 2024; 42: 1003–10212210.06808 [CrossRef] [Google Scholar]
- Huth AG, de Heer WA, Griffiths TL, et al. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 2016; 532: 453-458. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schönberger JL, Pollefeys M, Geiger A, et al. Semantic visual localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018. 6896–6906 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.