Open Access
Issue
Natl Sci Open
Volume 3, Number 4, 2024
Article Number 20230042
Number of page(s) 11
Section Materials Science
DOI https://doi.org/10.1360/nso/20230042
Published online 27 December 2023
  • Han L, Li P, Yu S, et al. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism. Int J Fatigue 2022; 154: 106558. [Article] [Google Scholar]
  • Williams JC, Starke EA Jr.. Progress in structural materials for aerospace systems. Acta Mater 2003; 51: 5775-5799. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Sci Tech 1999; 3: 513-523. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Long H, Mao S, Liu Y, et al. Microstructural and compositional design of Ni-based single crystalline superalloys—A review. J Alloys Compd 2018; 743: 203-220. [Article] [CrossRef] [Google Scholar]
  • Tan KJ, Wang XG, Liang JJ, et al. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy. J Mater Sci Tech 2021; 60: 206-215. [Article] [CrossRef] [Google Scholar]
  • Agudo Jácome L, Nörtershäuser P, Somsen C, et al. On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys. Acta Mater 2014; 69: 246-264. [Article] [CrossRef] [Google Scholar]
  • Ma S, Carroll L, Pollock TM. Development of γ phase stacking faults during high temperature creep of Ru-containing single crystal superalloys. Acta Mater 2007; 55: 5802-5812. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Long H, Wei H, Liu Y, et al. Effect of lattice misfit on the evolution of the dislocation structure in Ni-based single crystal superalloys during thermal exposure. Acta Mater 2016; 120: 95-107. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Long H, Mao S, Xiang S, et al. A modification on Brook formula in calculating the misfit of Ni-based superalloys. Mater Des 2017; 126: 12-17. [Article] [Google Scholar]
  • Epishin A, Link T. Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses. Philos Mag 2004; 84: 1979-2000. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang J, Murakumo T, Harada H, et al. Creep deformation mechanisms in some modern single-crystal superalloys. Superalloys 2004; 2004: 189–195 [CrossRef] [Google Scholar]
  • Zhang JX, Wang JC, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Mater 2005; 53: 4623-4633. [Article] [CrossRef] [Google Scholar]
  • Li YL, Wu WP, Ruan ZG. Molecular dynamics simulation of the evolution of interfacial dislocation network and stress distribution of a ni-based single-crystal superalloy. Acta Metall Sin (Engl Lett) 2016; 29: 689-696. [Article] [CrossRef] [Google Scholar]
  • Pollock TM, Argon AS. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall Mater 1992; 40: 1-30. [Article] [CrossRef] [Google Scholar]
  • Zhang JX, Murakumo T, Koizumi Y, et al. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy. Metall Mater Trans A 2002; 33: 3741-3746. [Article] [CrossRef] [Google Scholar]
  • Ding Q, Li S, Chen LQ, et al. Re segregation at interfacial dislocation network in a nickel-based superalloy. Acta Mater 2018; 154: 137-146. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Qi D, Wang L, Zhao P, et al. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature. Scripta Mater 2019; 167: 71-75. [Article] [CrossRef] [Google Scholar]
  • Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 1951; 64: 747-753. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang L, Teng J, Liu P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun 2014; 5: 4402. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cui L, Yu J, Liu J, et al. The creep deformation mechanisms of a newly designed nickel-base superalloy. Mater Sci Eng-A 2018; 710: 309-317. [Article] [CrossRef] [Google Scholar]
  • Huang YS, Wang XG, Cui CY, et al. The effect of coarsening of γ′ precipitate on creep properties of Ni-based single crystal superalloys during long-term aging. Mater Sci Eng-A 2020; 773: 138886. [Article] [CrossRef] [Google Scholar]
  • Gel M, Duhl DN, Giamei AF. The development of single crystal superalloy turbine blades. Superalloys 1980; 1980: 205–214 [Google Scholar]
  • Petrushin NV, Elyutin ES, Visik EM, et al. Development of a single-crystal fifth-generation nickel superalloy. Russ Metall 2017; 2017: 936-947. [Article] [CrossRef] [Google Scholar]
  • Harris K, Erickson GL, Sikkenga SL, et al. Development of two rhenium- containing superalloys for single-crystal blade and directionally solidified vane applications in advanced turbine engines. JMEP 1993; 2: 481-487. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Argence D, Vernault C, Desvallees Y, et al. MC-NG: A 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes. Superalloys 2000; 2000: 829–837 [Google Scholar]
  • Lavigne O, Ramusat C, Drawin S. Relationships between microstructural instabilities and mechanical behaviour in new generation Nickel-based single crystal. Superalloys 2004; 2004: 667–675 [CrossRef] [Google Scholar]
  • Caron P, Lavigne O. Recent studies at onera on superalloys for single crystal turbine blades. J Aerospace Lab 2011; 1–14 [MathSciNet] [Google Scholar]
  • Yamagata T, Harada H, Nakazawa S. Alloy design for high strength nickel-base single crystal alloys. Superalloys 1984; 1984: 157–166 [Google Scholar]
  • Ford DA, Arthey RP. Development of single crystal alloys for specific engine applications. Superalloys 1984; 1984: 115–124 [Google Scholar]
  • Cetel AD, Duhl DN. Second-generation nickel-base single crystal superalloy. Superalloys 1988; 1988: 235–244 [Google Scholar]
  • Strangman TE, Hoppin GS, Phipps CM, et al. Development of exothermically cast single-crystal MAR-M 247 and derivative Alloys. Superalloys 1980; 1980: 215–224 [Google Scholar]
  • Fink PJ, Miller JL, Konitzer DG. Rhenium reduction—Alloy design using an economically strategic element. JOM 2010; 62: 55-57. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Karunaratne MSA, Rae CMF, Reed RC. On the microstructural instability of an experimental nickel-based single-crystal superalloy. Metall Mater Trans A 2001; 32: 2409-2421. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang JX, Harada H, Ro Y, et al. Thermomechanical fatigue mechanism in a modern single crystal nickel base superalloy TMS-82. Acta Mater 2008; 56: 2975-2987. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li J, Zhong Z, Tang D. A low-cost second generation single crystal superalloy DD6. Superalloys 2000; 2000: 777–783 [Google Scholar]
  • Erickson GL. The development and application of CMSX®-10. Superalloys 1996; 1996: 35–44 [Google Scholar]
  • Erickson GL. A new, third-generation, single-crystal, casting superalloy. JOM 1995; 47: 36-39. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Walston W, O’hara K, Ross E, et al. Rene N6: Third generation single crystal superalloy. Superalloys 1996; 1996: 27–34 [Google Scholar]
  • Yeh AC, Rae CMF, Tin S. High temperature creep of Ru-bearing Ni-base single crystal superalloys. Superalloys 2004; 2004: 677–685 [CrossRef] [Google Scholar]
  • Murakami H, Honma T, Koizumi Y. Distribution of platinum group metals in Ni-base single crystal superalloys. Superalloys 2000; 2000: 747–756 [Google Scholar]
  • Yokokawa T, Osawa M, Nishida K, et al. Partitioning behavior of platinum group metals on the γ and γ′ phases of Ni-base superalloys at high temperatures. Scripta Mater 2003; 49: 1041-1046. [Article] [CrossRef] [Google Scholar]
  • Kablov EN, Petrushin NV. Designing of high-rhemium single cristal Ni-based supealloy for gas turbine blades. Superalloys 2008; 2008: 901–908 [Google Scholar]
  • Li JR, Liu SZ, Wang XG, et al. Development of a low-cost third generation single crystal superalloy DD9. Superalloys 2016; 2016: 57–63 [Google Scholar]
  • Sato A, Harada H, Yeh AC. A 5th generation SC superalloy with balanced high temperature properties and processability. Superalloys 2008; 2008: 131–138 [Google Scholar]
  • Kawagishi K, Yeh AC, Yokokawa T, et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238. Superalloys 2012; 2012: 189–195 [CrossRef] [Google Scholar]
  • Caron P. High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000; 2000: 737–746 [Google Scholar]
  • Walston S, Cetel A, MacKay R. Joint development of a fourth generation single crystal superalloy. Superalloys 2004; 2004: 15–24 [CrossRef] [Google Scholar]
  • Zhang JX, Murakumo T, Koizumi Y, et al. The influence of interfacial dislocation arrangements in a fourth generation single crystal TMS-138 superalloy on creep properties. J Mater Sci 2003; 38: 4883-4888. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Koizumi Y, Kobayashi T, Zhang J, et al. Development of next-generation Ni-base single crystal superalloys. Superalloys 2004; 2004: 35–43 [CrossRef] [Google Scholar]
  • Liu L, Jin T, Chen H, et al. Effect of Ti/Al ratio on the microstructure and stress rupture property in a Ni-base single crystal superalloy. Rare Metal Mater Eng 2009, 38: 612–616 [Google Scholar]
  • Yuan Y, Kawagishi K, Koizumi Y, et al. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800°C. Mater Sci Eng-A 2014; 608: 95-100. [Article] [CrossRef] [Google Scholar]
  • Yeh AC, Sato A, Kobayashi T, et al. On the creep and phase stability of advanced Ni-base single crystal superalloys. Mater Sci Eng-A 2008; 490: 445-451. [Article] [CrossRef] [Google Scholar]
  • Xia W, Zhao X, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys. J Mater Sci Tech 2020; 44: 76-95. [Article] [CrossRef] [Google Scholar]
  • Wang H, Long H, Liu Y, et al. The widening of the solution heat treatment window by the addition of Ru in Ni-based single crystal superalloy. Mater Charact 2023; 203: 113057. [Article] [Google Scholar]
  • Zhang JX, Murakumo T, Harada H, et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scripta Mater 2003; 48: 287-293. [Article] [Google Scholar]
  • Kobayashi T, Koizumi Y, Harada H, et al. Influence of alloying elements on the creep strength of a 5th generation single crystal superalloy TMS-173. J Jpn Inst Met 2005; 69: 241-244. [Article] [CrossRef] [Google Scholar]
  • Larson FR, Miller J. A time-temperature relationship for rupture and creep stresses. J Fluids Eng 1952; 74: 765-771. [Article] [Google Scholar]
  • Yokokawa T, Harada H, Kawagishi K, et al. Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238. Superalloys 2020; 2020: 122–130 [Google Scholar]
  • Yeh A, Kawagishi K, Harada H, et al. Development of Si-bearing 4th generation Ni-base single crystal superalloys. Superalloys 2008; 2008: 619–628 [Google Scholar]
  • Luo YS, Zhao YS, Yang S, et al. Effects of Ru on microstructure and structure and stress rupture property of Ni-based single crystal superalloy DD22. J Aeronaut Mater 2016; 36: 132–140 [Google Scholar]
  • Zhu O, Li YL, Zhang Y, et al. Compositional characteristic and evolution of single-crystal superalloys in Foreign aeroengines. Materials Reports 2014; 28: 372-378. [Google Scholar]
  • Sato A, Aoki Y, Arai M, et al. Effect of aluminide coating on creep properties of Ni-base single crystal superalloys. J Jpn Inst Met 2007; 71: 320-325. [Article] [CrossRef] [Google Scholar]
  • Wee S, Do J, Kim K, et al. Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines. Appl Sci 2020; 10: 5476. [Article] [CrossRef] [Google Scholar]
  • Yang H, Yiling L. Incipient melting structures in DD9 nickel-based single crystal superalloy during solid solution. Special Cast Nonferr Alloy 2021; 41: 336–339 [Google Scholar]
  • Li Y, Jia Z, Lu Y, et al. Research of the micropores and maximum temperature of a new type of nickel-based single crystal superalloy during homogenization. Adv Eng Mater 2020; 22: 2000434. [Article] [CrossRef] [Google Scholar]
  • Rae C, Seetharaman V, Tin S. CMSX-4® plus single crystal alloy development, characterization and application development. In: Hardy M, Huron E, Glatzel U, et al. (Eds.). Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. Hoboken: Wiley; 2016: 25–33 [Google Scholar]
  • Pang HT, D’Souza N, Dong H, et al. Detailed analysis of the solution heat treatment of a third-generation single-crystal nickel-based superalloy CMSX-10K®. Metall Mater Trans A 2016; 47: 889-906. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yue Q, Liu L, Yang W, et al. Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy. J Mater Sci Tech 2019; 35: 752-763. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction. Acta Mater 2004; 52: 3737-3744. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yue Q, Liu L, Yang W, et al. Stress dependence of dislocation networks in elevated temperature creep of a Ni-based single crystal superalloy. Mater Sci Eng-A 2019; 742: 132-137. [Article] [CrossRef] [Google Scholar]
  • Li YM, Wang XG, Tan ZH, et al. On dislocation networks and superdislocations in Re-containing nickel-based SX superalloy under different creep conditions. Intermetallics 2022; 148: 107646. [Article] [CrossRef] [Google Scholar]
  • Gu H, Cao L, Xue M. Effect of stress on microstructural stability of DD10 single crystal superalloy. J Aeronaut Mater 2014; 34: 1–5 [Google Scholar]
  • Koizumi Y, Yokokawa T, Harada H, et al. Database of creep property for nickel-base single crystal superalloys, RenéN4, RenéN5 and CMSX-4. J Jpn Inst Met 2006; 70: 176-179. [Article] [CrossRef] [Google Scholar]
  • Kobayashi T, Harada H, Osawa M, et al. Creep strength of Co-free Ni-base single crystal superalloys. J Jpn Inst Met 2005; 69: 707-710. [Article] [CrossRef] [Google Scholar]
  • Kobayashi T, Koizumi Y, Harada H, et al. Evaluation of single crystal superalloys for construction of their creep databases. J Jpn Inst Met 2005; 69: 245-248. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.