Open Access
Review
Issue |
Natl Sci Open
Volume 3, Number 4, 2024
|
|
---|---|---|
Article Number | 20230087 | |
Number of page(s) | 16 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20230087 | |
Published online | 15 March 2024 |
- Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature 2012; 484: 465-472. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shah K, Al-Haidari A, Sun J, et al. T cell receptor (TCR) signaling in health and disease. Sig Transduct Target Ther 2021; 6: 412. [Article] [CrossRef] [Google Scholar]
- Attaf M, Huseby E, Sewell AK. αβ T cell receptors as predictors of health and disease. Cell Mol Immunol 2015; 12: 391-399. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schamel WWA, Arechaga I, Risueño RM, et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med 2005; 202: 493-503. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pielak RM, O’Donoghue GP, Lin JJ, et al. Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination. Proc Natl Acad Sci USA 2017; 114: 12190-12195. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sykulev Y, Joo M, Vturina I, et al. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 1996; 4: 565-571. [Article] [CrossRef] [PubMed] [Google Scholar]
- von Boehmer H, Kisielow P. Self-nonself discrimination by T cells. Science 1990; 248: 1369-1373. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huang J, Brameshuber M, Zeng X, et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 2013; 39: 846-857. [Article] [CrossRef] [Google Scholar]
- Garcia KC, Degano M, Stanfield RL, et al. An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex. Science 1996; 274: 209-219. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hennecke J, Wiley DC. T cell receptor-MHC interactions up close. Cell 2001; 104: 1-4. [Article] [CrossRef] [PubMed] [Google Scholar]
- Arstila TP, Casrouge A, Baron V́, et al. A direct estimate of the human αβ T cell receptor diversity. Science 1999; 286: 958-961. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chothia C, Boswell DR, Lesk AM. The outline structure of the T-cell alpha beta receptor. EMBO J 1988; 7: 3745-3755. [Article] [CrossRef] [PubMed] [Google Scholar]
- Aran A, Garrigós L, Curigliano G, et al. Evaluation of the TCR repertoire as a predictive and prognostic biomarker in cancer: Diversity or clonality?. Cancers 2022; 14: 1771. [Article] [Google Scholar]
- Mora T, Walczak AM. Quantifying lymphocyte receptor diversity. In: Das J, Jayaprakash C, Eds. Systems Immunology. Boca Raton: CRC Press, 2018. 183–198 [Google Scholar]
- Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395-402. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bhati M, Cole DK, McCluskey J, et al. The versatility of the αβT-cell antigen receptor. Protein Sci 2014; 23: 260-272. [Article] [CrossRef] [PubMed] [Google Scholar]
- Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol 2009; 21: 133-139. [Article] [Google Scholar]
- Samelson LE, Klausner RD. The T-cell antigen receptor. Ann New York Acad Sci 1988; 540: 1-3. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xu X, Li H, Xu C. Structural understanding of T cell receptor triggering. Cell Mol Immunol 2020; 17: 193-202. [Article] [CrossRef] [PubMed] [Google Scholar]
- Reth M. Antigen receptor tail clue. Nature 1989; 338: 383-384. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Alcover A, Alarcón B, Di Bartolo V. Cell biology of T cell receptor expression and regulation. Annu Rev Immunol 2018; 36: 103-125. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Song X, Shen L, et al. Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 2022; 8: 123-134. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dong D, Zheng L, Lin J, et al. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature 2019; 573: 546-552. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen Y, Zhu Y, Li X, et al. Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Mol Cell 2022; 82: 1278-1287. [Article] [CrossRef] [PubMed] [Google Scholar]
- Notti R Q, Yi F, Heissel S, et al. The resting state of the human T-cell receptor. bioRxiv: 2023.08.22.554360, 2023 [Google Scholar]
- Aivazian D, Stern LJ. Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol 2000; 7: 1023-1026. [Article] [Google Scholar]
- Xu C, Gagnon E, Call ME, et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ɛ cytoplasmic tyrosine-based motif. Cell 2008; 135: 702-713. [Article] [Google Scholar]
- DeFord-Watts LM, Dougall DS, Belkaya S, et al. The CD3ζ subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 2011; 186: 6839-6847. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi X, Bi Y, Yang W, et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 2013; 493: 111-115. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li L, Guo X, Shi X, et al. Ionic CD3-Lck interaction regulates the initiation of T-cell receptor signaling. Proc Natl Acad Sci USA 2017; 114: E5891-E5899. [Article] [Google Scholar]
- Wu H, Cao R, Wei S, et al. Cholesterol binds in a reversed orientation to TCRβ-TM in which its oh group is localized to the center of the lipid bilayer. J Mol Biol 2021; 433: 167328. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang W, Bai Y, Xiong Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016; 531: 651-655. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Molnár E, Swamy M, Holzer M, et al. Cholesterol and sphingomyelin drive ligand-independent t-cell antigen receptor nanoclustering. J Biol Chem 2012; 287: 42664-42674. [Article] [CrossRef] [PubMed] [Google Scholar]
- Swamy M, Beck-Garcia K, Beck-Garcia E, et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 2016; 44: 1091-1101. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schamel WWA, Alarcon B, Höfer T, et al. The allostery model of TCR regulation. J Immunol 2017; 198: 47-52. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yin Y, Mariuzza RA. The multiple mechanisms of T cell receptor cross-reactivity. Immunity 2009; 31: 849-851. [Article] [CrossRef] [PubMed] [Google Scholar]
- Barbosa CRR, Barton J, Shepherd AJ, et al. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478: 4187-4202. [Article] [CrossRef] [PubMed] [Google Scholar]
- La Gruta NL, Gras S, Daley SR, et al. Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol 2018; 18: 467-478. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rossjohn J, Gras S, Miles JJ, et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2015; 33: 169-200. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gil A, Kenney LL, Mishra R, et al. Vaccination and heterologous immunity: Educating the immune system. Trans R Soc Tropical Med Hyg 2015; 109: 62-69. [Article] [CrossRef] [PubMed] [Google Scholar]
- Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 2004; 23: 7990-8000. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chang VT, Fernandes RA, Ganzinger KA, et al. Initiation of T cell signaling by CD45 segregation at “close contacts”. Nat Immunol 2016; 17: 574-582. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ben Mkaddem S, Benhamou M, Monteiro RC. Understanding Fc receptor involvement in inflammatory diseases: From mechanisms to new therapeutic tools. Front Immunol 2019; 10: 811. [Article] [CrossRef] [PubMed] [Google Scholar]
- Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting SRC homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 2001; 98: 13866-13871. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Beddoe T, Chen Z, Clements CS, et al. Antigen ligation triggers a conformational change within the constant domain of the αβ T cell receptor. Immunity 2009; 30: 777-788. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rangarajan S, He Y, Chen Y, et al. Peptide-MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. J Biol Chem 2018; 293: 15991-16005. [Article] [CrossRef] [PubMed] [Google Scholar]
- Brazin KN, Mallis RJ, Boeszoermenyi A, et al. The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity 2018; 49: 829-841.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee MS, Glassman CR, Deshpande NR, et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 2015; 43: 227-239. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gil D, Schamel WWA, Montoya M, et al. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 2002; 109: 901-912. [Article] [CrossRef] [PubMed] [Google Scholar]
- Guo X, Yan C, Li H, et al. Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res 2017; 27: 505-525. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sušac L, Vuong MT, Thomas C, et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 2022; 185: 3201-3213. [Article] [CrossRef] [PubMed] [Google Scholar]
- Saotome K, Dudgeon D, Colotti K, et al. Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM. Nat Commun 2023; 14: 2401. [Article] [CrossRef] [PubMed] [Google Scholar]
- Brazin KN, Mallis RJ, Das DK, et al. Structural features of the αβTCR mechanotransduction apparatus that promote pmhc discrimination. Front Immunol 2015; 6: 441. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu B, Chen W, Evavold BD, et al. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 2014; 157: 357-368. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sibener LV, Fernandes RA, Kolawole EM, et al. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 2018; 174: 672-687. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li YC, Chen BM, Wu PC, et al. Cutting edge: Mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J Immunol 2010; 184: 5959-5963. [Article] [CrossRef] [PubMed] [Google Scholar]
- Krogsgaard M, Li Q, Sumen C, et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 2005; 434: 238-243. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Campi G, Varma R, Dustin ML. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 2005; 202: 1031-1036. [Article] [CrossRef] [PubMed] [Google Scholar]
- Brameshuber M, Kellner F, Rossboth BK, et al. Monomeric TCRs drive T cell antigen recognition. Nat Immunol 2018; 19: 487-496. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hellmeier J, Platzer R, Eklund AS, et al. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proc Natl Acad Sci USA 2021; 118: e2016857118. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dong R, Aksel T, Chan W, et al. DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc Natl Acad Sci USA 2021; 118: e2109057118. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Taylor MJ, Husain K, Gartner ZJ, et al. A DNA-based T cell receptor reveals a role for receptor clustering in ligand discrimination. Cell 2017; 169: 108-119. [Article] [CrossRef] [PubMed] [Google Scholar]
- van der Merwe PA, Dushek O. Mechanisms for T cell receptor triggering. Nat Rev Immunol 2011; 11: 47-55. [Article] [Google Scholar]
- Courtney AH, Lo WL, Weiss A. TCR signaling: Mechanisms of initiation and propagation. Trends Biochem Sci 2018; 43: 108-123. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zareie P, Szeto C, Farenc C, et al. Canonical T cell receptor docking on peptide-MHC is essential for T cell signaling. Science 2021; 372: eabe9124. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hartl FA, Beck-Garcìa E, Woessner NM, et al. Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat Immunol 2020; 21: 902-913. [Article] [CrossRef] [PubMed] [Google Scholar]
- Casas J, Brzostek J, Zarnitsyna VI, et al. Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat Commun 2014; 5: 5624. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wei Q, Brzostek J, Sankaran S, et al. Lck bound to coreceptor is less active than free Lck. Proc Natl Acad Sci USA 2020; 117: 15809-15817. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Irvine DJ, Purbhoo MA, Krogsgaard M, et al. Direct observation of ligand recognition by T cells. Nature 2002; 419: 845-849. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- James JR, Vale RD. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 2012; 487: 64-69. [Article] [CrossRef] [PubMed] [Google Scholar]
- Choudhuri K, Wiseman D, Brown MH, et al. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 2005; 436: 578-582. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Razvag Y, Neve-Oz Y, Sajman J, et al. Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nat Commun 2018; 9: 732. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wilhelm KB, Morita S, McAffee DB, et al. Height, but not binding epitope, affects the potency of synthetic TCR agonists. Biophys J 2021; 120: 5136-5137. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen KY, Jenkins E, Körbel M, et al. Trapping or slowing the diffusion of T cell receptors at close contacts initiates T cell signaling. Proc Natl Acad Sci USA 2021; 118: e2024250118. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cai H, Muller J, Depoil D, et al. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering. Nat Nanotech 2018; 13: 610-617. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jung Y, Wen L, Altman A, et al. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat Commun 2021; 12: 3872. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu W, Zhou Q, Masubuchi T, et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 2020; 182: 855-871.e23. [Article] [Google Scholar]
- Dietrich J, Kastrup J, Nielsen BL, et al. Regulation and function of the CD3γ DxxxLL motif: A binding site for adaptor protein-1 and adaptor protein-2 in vitro. J Cell Biol 1997; 138: 271-281. [Article] [CrossRef] [PubMed] [Google Scholar]
- Letourneur F, Klausner RD. A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 1992; 69: 1143-1157. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dietrich J, Hou X, Wegener AM, et al. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor.. EMBO J 1994; 13: 2156-2166. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Holst J, Woo SR, et al. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development. EMBO J 2010; 29: 1285-1298. [Article] [CrossRef] [PubMed] [Google Scholar]
- Locke M, Toth JI, Petroski MD. Lys11- and Lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation. Biochem J 2014; 459: 205-216. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nurieva RI, Zheng S, Jin W, et al. The E3 ubiquitin ligase grail regulates T cell tolerance and regulatory T cell function by mediating t cell receptor-CD3 degradation. Immunity 2010; 32: 670-680. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang HY, Altman Y, Fang D, et al. Cbl promotes ubiquitination of the T cell receptor ζ through an adaptor function of Zap-70. J Biol Chem 2001; 276: 26004-26011. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huang H, Jeon M, Liao L, et al. K33-linked polyubiquitination of t cell receptor-ζ regulates proteolysis-independent T cell signaling. Immunity 2010; 33: 60-70. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cenciarelli C, Hou D, Hsu KC, et al. Activation-induced ubiquitination of the T cell antigen receptor. Science 1992; 257: 795-797. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tubo NJ, Pagán AJ, Taylor JJ, et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 2013; 153: 785-796. [Article] [CrossRef] [PubMed] [Google Scholar]
- Snook JP, Kim C, Williams MA. TCR signal strength controls the differentiation of CD4+ effector and memory T cells. Sci Immunol 2018; 3: eaas9103. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kersh EN, Shaw AS, Allen PM. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 1998; 281: 572-575. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Holst J, Wang H, Eder KD, et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol 2008; 9: 658-666. [Article] [Google Scholar]
- Guy CS, Vignali KM, Temirov J, et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol 2013; 14: 262-270. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feucht J, Sun J, Eyquem J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 2019; 25: 82-88. [Article] [CrossRef] [PubMed] [Google Scholar]
- Velasco Cárdenas RMH, Brandl SM, Meléndez AV, et al. Harnessing CD3 diversity to optimize car T cells. Nat Immunol 2023; 24: 2135-2149. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mukhopadhyay H, de Wet B, Clemens L, et al. Multisite phosphorylation modulates the T cell receptor ζ-chain potency but not the switchlike response. Biophys J 2016; 110: 1896-1906. [Article] [Google Scholar]
- James JR. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci Signal 2018; 11: eaan1088. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gaud G, Achar S, Bourassa FXP, et al. CD3ζ ITAMs enable ligand discrimination and antagonism by inhibiting TCR signaling in response to low-affinity peptides. Nat Immunol 2023; 24: 2121-2134. [Article] [CrossRef] [PubMed] [Google Scholar]
- Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified t cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509-1518. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang M, Munoz J, Goy A, et al. KTE-X19 car T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020; 382: 1331-1342. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hale M, Mesojednik T, Romano Ibarra GS, et al. Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther 2017; 25: 570-579. [Article] [CrossRef] [PubMed] [Google Scholar]
- Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells. Nature 2019; 573: 430-433. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wei J, Guo Y, Wang Y, et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol 2021; 18: 792-804. [Article] [CrossRef] [PubMed] [Google Scholar]
- Abrantes R, Duarte HO, Gomes C, et al. CAR-Ts: New perspectives in cancer therapy. FEBS Lett 2022; 596: 403-416. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chmielewski M, Abken H. TRUCKS, the fourth-generation CAR T cells: Current developments and clinical translation. Adv Cell Gene Ther 2020; 3: e84. [Article] [CrossRef] [Google Scholar]
- Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90: 720-724. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Guedan S, Posey AD Jr., Shaw C, et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 2018; 3: e96976. [Article] [CrossRef] [PubMed] [Google Scholar]
- Krause A, Guo HF, Latouche JB, et al. Antigen-dependent Cd28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med 1998; 188: 619-626. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lin WY, Wang HH, Chen YW, et al. Gene modified CAR-T cellular therapy for hematologic malignancies. Int J Mol Sci 2020; 21: 8655. [Article] [Google Scholar]
- Tokarew N, Ogonek J, Endres S, et al. Teaching an old dog new tricks: Next-generation CAR T cells. Br J Cancer 2019; 120: 26-37. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bridgeman JS, Hawkins RE, Bagley S, et al. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol 2010; 184: 6938-6949. [Article] [CrossRef] [PubMed] [Google Scholar]
- Inoo K, Inagaki R, Fujiwara K, et al. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research. Mol Ther-Oncolytics 2016; 3: 16024. [Article] [CrossRef] [Google Scholar]
- Fujiwara K, Tsunei A, Kusabuka H, et al. Hinge and transmembrane domains of chimeric antigen receptor regulate receptor expression and signaling threshold. Cells 2020; 9: 1182. [Article] [CrossRef] [PubMed] [Google Scholar]
- Elazar A, Chandler NJ, Davey AS, et al. De novo-designed transmembrane domains tune engineered receptor functions. eLife 2022; 11: e75660. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Gao Y, Niu C, et al. Chimeric antigen receptor clustering via cysteines enhances T-cell efficacy against tumor. Cancer Immunol Immunother 2022; 71: 2801-2814. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mestermann K, Giavridis T, Weber J, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 2019; 11: eaau5907. [Article] [CrossRef] [PubMed] [Google Scholar]
- Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal 2018; 11: eaat6753. [Article] [Google Scholar]
- Rohrs JA, Zheng D, Graham NA, et al. Computational model of chimeric antigen receptors explains site-specific phosphorylation kinetics. Biophys J 2018; 115: 1116-1129. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sun C, Shou P, Du H, et al. THEMIS-SHP1 recruitment by 4-1BB tunes LCK-mediated priming of chimeric antigen receptor-redirected T cells. Cancer Cell 2020; 37: 216-225. [Article] [CrossRef] [PubMed] [Google Scholar]
- Muller YD, Nguyen DP, Ferreira LMR, et al. The CD28-transmembrane domain mediates chimeric antigen receptor heterodimerization with CD28. Front Immunol 2021; 12: 639818. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wan Z, Shao X, Ji X, et al. Transmembrane domain-mediated Lck association underlies bystander and costimulatory ICOS signaling. Cell Mol Immunol 2020; 17: 143-152. [Article] [Google Scholar]
- Xiao Q, Zhang X, Tu L, et al. Size-dependent activation of CAR-T cells. Sci Immunol 2022; 7: eabl3995. [Article] [Google Scholar]
- Li W, Qiu S, Chen J, et al. Chimeric antigen receptor designed to prevent ubiquitination and downregulation showed durable antitumor efficacy. Immunity 2020; 53: 456-470. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gordon KS, Kyung T, Perez CR, et al. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat Biomed Eng 2022; 6: 855-866. [Article] [CrossRef] [PubMed] [Google Scholar]
- Castellanos-Rueda R, Di Roberto RB, Bieberich F, et al. speedingCARs: Accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing. Nat Commun 2022; 13: 6555. [Article] [CrossRef] [PubMed] [Google Scholar]
- Salter AI, Rajan A, Kennedy JJ, et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci Signal 2021; 14: eabe2606. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Liu G, Wang J, et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci Transl Med 2021; 13: eabb5191. [Article] [Google Scholar]
- Wang J, Zhang X, Zhou Z, et al. A novel adoptive syntheticTCR and antigen receptor (STAR)T-cell therapy for B-cell acute lymphoblastic leukemia. Am J Hematol 2022; 97: 992-1004. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mansilla-Soto J, Eyquem J, Haubner S, et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat Med 2022; 28: 345-352. [Article] [CrossRef] [PubMed] [Google Scholar]
- Helsen CW, Hammill JA, Lau VWC, et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun 2018; 9: 3049. [Article] [CrossRef] [PubMed] [Google Scholar]
- Birtel M, Voss RH, Reinhard K, et al. A TCR-like car promotes sensitive antigen recognition and controlled T-cell expansion upon MRNA vaccination. Cancer Res Commun 2022; 2: 827-841. [Article] [CrossRef] [PubMed] [Google Scholar]
- Baeuerle PA, Ding J, Patel E, et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat Commun 2019; 10: 2087. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xu Y, Yang Z, Horan LH, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov 2018; 4: 62. [Article] [CrossRef] [PubMed] [Google Scholar]
- Glanville J, Huang H, Nau A, et al. Identifying specificity groups in the T cell receptor repertoire. Nature 2017; 547: 94-98. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dash P, Fiore-Gartland AJ, Hertz T, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 2017; 547: 89-93. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pogorelyy MV, Minervinaet AA, Shugay M, et al. Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biol 2019; 17: e3000314 [Google Scholar]
- Zhang H, Zhan X, Li B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat Commun 2021; 12: 4699. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Huang H, Wang C, Rubelt F, et al. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol 2020; 38: 1194-1202. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mayer-Blackwell K, Fiore-Gartland A, Thomas PG. Flexible distance-based TCR analysis in python with tcrdist3. Methods Mol Biol 2022; 2574: 309–366 [CrossRef] [PubMed] [Google Scholar]
- Davidsen K, Olson BJ, DeWitt Iii WS, et al. Deep generative models for T cell receptor protein sequences. eLife 2019; 8: e46935. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lu T, Zhang Z, Zhu J, et al. Deep learning-based prediction of the T cell receptor-antigen binding specificity. Nat Mach Intell 2021; 3: 864-875. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sidhom JW, Larman HB, Pardoll DM, et al. DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. Nat Commun 2021; 12: 1605. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Katayama Y, Yokota R, Akiyama T, et al. Machine learning approaches to TCR repertoire analysis. Front Immunol 2022; 13: 858057. [Article] [CrossRef] [PubMed] [Google Scholar]
- Borrman T, Pierce B, Vreven T, et al. High-throughput modeling and scoring of TCR-pMHC complexes to predict cross-reactive peptides. Bioinformatics 2020; 36: 5377–5385 [Google Scholar]
- Bradley P. Structure-based prediction of T cell receptor:peptide-MHC interactions. eLife 2023; 12: e82813. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cameron BJ, Gerry AB, Dukes J, et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 2013; 5: 197ra103. [Article] [Google Scholar]
- Zhao X, Kolawole EM, Chan W, et al. Tuning T cell receptor sensitivity through catch bond engineering. Science 2022; 376: eabl5282. [Article] [CrossRef] [PubMed] [Google Scholar]
- Miyao K, Terakura S, Okuno S, et al. Introduction of genetically modified CD3ζ improves proliferation and persistence of antigen-specific CTLs. Cancer Immunol Res 2018; 6: 733-744. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sakai T, Terakura S, Miyao K, et al. Artificial T cell adaptor molecule-transduced TCR-T cells demonstrated improved proliferation only when transduced in a higher intensity. Mol Ther-Oncolytics 2020; 18: 613-622. [Article] [CrossRef] [Google Scholar]
- Norberg SM, Hinrichs CS. Engineered T cell therapy for viral and non-viral epithelial cancers. Cancer Cell 2023; 41: 58-69. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Liu Z, Wei W, et al. TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol 2022; 11: 38. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.