Issue |
Natl Sci Open
Volume 3, Number 6, 2024
Special Topic: Key Materials for Carbon Neutrality
|
|
---|---|---|
Article Number | 20240042 | |
Number of page(s) | 32 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20240042 | |
Published online | 22 October 2024 |
- Wang X-Y, Pan Y-Z, Yang J, et al. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew Chem Int Ed 2024; 63: e202404295 [CrossRef] [PubMed] [Google Scholar]
- Yang J, Zhu C, Li W, et al. Organocatalyst supported by a single‐atom support accelerates both electrodes used in the chlor‐alkali industry via modification of non‐covalent interactions. Angew Chem Int Ed 2024; 63: e202314382. [Article] [CrossRef] [PubMed] [Google Scholar]
- Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin 2023; 73: 17-48. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Cheng D, He J, et al. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat Protoc 2021; 16: 4878-4896. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao J, Zhang Y, Zhuang Z, et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew Chem Int Ed 2024; 63: e202404968. [Article] [CrossRef] [Google Scholar]
- Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16: 173-194. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Sun Y, Wang Q, et al. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew Chem Int Ed 2024; 63: e202405637 [CrossRef] [PubMed] [Google Scholar]
- Bauri S, Tripathi S, Choudhury AM, et al. Nanomaterials as theranostic agents for cancer therapy. ACS Appl Nano Mater 2023; 6: 21462-21495. [Article] [CrossRef] [Google Scholar]
- Khan MI, Hossain MI, Hossain MK, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl Bio Mater 2022; 5: 971-1012. [Article] [CrossRef] [PubMed] [Google Scholar]
- Khan N, Slathia G, Kaliya K, et al. Recent progress in covalent organic frameworks for cancer therapy. Drug Discov Today 2023; 28: 103602. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yao S, Liu Z, Li L. Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Lett 2021; 13: 176-196. [Article] [CrossRef] [PubMed] [Google Scholar]
- He X, Jiang Z, Akakuru OU, et al. Nanoscale covalent organic frameworks: From controlled synthesis to cancer therapy. Chem Commun 2021; 57: 12417-12435. [Article] [CrossRef] [PubMed] [Google Scholar]
- Das S, Heasman P, Ben T, et al. Porous organic materials: Strategic design and structure–function correlation. Chem Rev 2017; 117: 1515-1563. [Article] [CrossRef] [PubMed] [Google Scholar]
- Debnath R, Sutradhar P, Saha M. Design of porous graphene materials from organic precursors. Cryst Res Technol 2023; 58: 2200186. [Article] [CrossRef] [Google Scholar]
- Kaneti YV, Tang J, Salunkhe RR, et al. Nanoarchitectured design of porous materials and nanocomposites from metal‐organic frameworks. Adv Mater 2017; 29: 1604898. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dong J, Han X, Liu Y, et al. Metal–covalent organic frameworks (MCOFs): A bridge between metal–organic frameworks and covalent organic frameworks. Angew Chem Int Ed 2020; 59: 13722-13733. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu Y, Han WK, Liu Y, et al. Mechanochemical transition from a hydrogen-bonded organic framework to covalent organic frameworks. ACS Mater Lett 2023; 5: 2534-2541. [Article] [CrossRef] [Google Scholar]
- Wang LG, Li JL, Ji SF, et al. Microenvironment engineering of covalent organic framework based single/dual-atom catalysts toward sustainable energy conversion and storage. Energy Environ Sci 2024, [Article]. [Google Scholar]
- Qin WK, Tung CH, Wu LZ. Covalent organic framework and hydrogen-bonded organic framework for solar-driven photocatalysis. J Mater Chem A 2023; 11: 12521-12538. [Article] [CrossRef] [Google Scholar]
- Lv L, Tan H, Kong Y, et al. Breaking the scaling relationship in C−N coupling via the doping effects for efficient urea electrosynthesis. Angew Chem Int Ed 2024; 63: e202401943 [CrossRef] [PubMed] [Google Scholar]
- Tao Y, Guan J, Zhang J, et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew Chem Int Ed 2024; 63: e202400625 [CrossRef] [Google Scholar]
- Mu XQ, Liu SL, Zhang MY, et al. Symmetry‐broken Ru nanoparticles with parasitic Ru‐Co dual‐single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew Chem Int Ed 2024; 63: e202319618. [Article] [CrossRef] [PubMed] [Google Scholar]
- Côté AP, Benin AI, Ockwig NW, et al. Porous, crystalline, covalent organic frameworks. Science 2005; 310: 1166-1170 [CrossRef] [PubMed] [Google Scholar]
- Zhao G, Mei Z, Duan L, et al. COF‐based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi‐solid‐state organic batteries. Carbon Energy 2023; 5: e248. [Article] [CrossRef] [Google Scholar]
- Zhang J, Yuan C, Kong L, et al. H-ferritin-nanocaged gadolinium nanoparticles for ultra-sensitive MR molecular imaging. Theranostics 2024; 14: 1956-1965. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song N, Zhang J, Zhai J, et al. Ferritin: A multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery. Acc Chem Res 2021; 54: 3313-3325. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ding SY, Wang W. Covalent organic frameworks (COFs): From design to applications. Chem Soc Rev 2013; 42: 548-568. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma K, Li J, Liu J, et al. Dimensional reduction enhances photocatalytic carbon dioxide reduction performance of metal-organic frameworks. Nano Res 2024; 17: 3653-3659. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Qiu W, Qin S, Li Y, et al. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew Chem Int Ed 2024; 63: e202402684 [CrossRef] [PubMed] [Google Scholar]
- Segura JL, Mancheño MJ, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications. Chem Soc Rev 2016; 45: 5635-5671. [Article] [CrossRef] [PubMed] [Google Scholar]
- Machado TF, Serra MES, Murtinho D, et al. Covalent organic frameworks: Synthesis, properties and applications—An overview. Polymers 2021; 13: 970-1007. [Article] [CrossRef] [PubMed] [Google Scholar]
- He M, Liang Q, Tang L, et al. Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications. Coord Chem Rev 2021; 449: 214219. [Article] [CrossRef] [Google Scholar]
- Liu Y, Zhuang Z, Liu Y, et al. Shear‐strained Pd single‐atom electrocatalysts for nitrate reduction to ammonia. Angew Chem Int Ed 2024; 63: e202411396. [Article] [Google Scholar]
- Wang B, Shen L, He Y, et al. Covalent organic framework/graphene hybrids: Synthesis, properties, and applications. Small 2024; 20: 2310174. [Article] [CrossRef] [Google Scholar]
- Sajjad M, Lu W. Covalent organic frameworks based nanomaterials: Design, synthesis, and current status for supercapacitor applications: A review. J Energy Storage 2021; 39: 102618. [Article] [CrossRef] [Google Scholar]
- Guan S, Yuan Z, Zhao S, et al. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium–platinum–titanium catalyst. Angew Chem Int Ed 2024; 63: e202408193. [Article] [CrossRef] [Google Scholar]
- Zhou S, Meng T, Hu D, et al. Characteristic synthesis of a covalent organic framework and its application in multifunctional tumor therapy. ACS Appl Bio Mater 2022; 5: 59-81. [Article] [CrossRef] [PubMed] [Google Scholar]
- Guan Q, Zhou LL, Li YA, et al. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 2019; 13: 13304-13316. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Wang S, Zhou Y, et al. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew Chem Int Ed 2019; 58: 14213-14218. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang W, Song Y, Chen J, et al. Polyoxometalate–covalent organic framework hybrid materials for pH-responsive photothermal tumor therapy. J Mater Chem B 2022; 10: 1128-1135. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ji W, Zhang P, Feng G, et al. Synthesis of a covalent organic framework with hetero-environmental pores and its medicine co-delivery application. Nat Commun 2023; 14: 6049-6059. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Bhunia S, Deo KA, Gaharwar AK. 2D covalent organic frameworks for biomedical applications. Adv Funct Mater 2020; 30: 2002046. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Zhang Z, Zhu J, Chen S, et al. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew Chem Int Ed 2023; 62: e202215136. [Article] [CrossRef] [Google Scholar]
- Tang H, Zhou H, Pan Y, et al. Single‐atom manganese‐catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew Chem Int Ed 2024; 63: e202315032. [Article] [CrossRef] [Google Scholar]
- Han A, Sun W, Wan X, et al. Construction of Co4 atomic clusters to enable Fe−N4 motifs with highly active and durable oxygen reduction performance. Angew Chem Int Ed 2023; 62: e202303185 [CrossRef] [PubMed] [Google Scholar]
- Zhu C, Yang J, Zhang J, et al. Single-atom materials: The application in energy conversion. Interd Mater 2024; 3: 74-86 [Google Scholar]
- Li Y, Niu S, Liu P, et al. Ruthenium nanoclusters and single atoms on α‐MoC/N‐doped carbon achieves low‐input/input‐free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew Chem Int Ed 2024; 63: e202316755. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kaur H, Siwal SS, Saini RV, et al. Covalent–organic framework-based materials in theranostic applications: Insights into their advantages and challenges. ACS Omega 2024; 9: 6235-6252. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu Y, Chao T, Li Y, et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew Chem Int Ed 2023; 62: e202308800 [CrossRef] [Google Scholar]
- Ning S, Ou H, Li Y, et al. Co0−Coδ+ interface double-site-mediated C−C coupling for the photothermal conversion of CO2 into light olefins. Angew Chem Int Ed 2023; 62: e202302253 [CrossRef] [PubMed] [Google Scholar]
- Chen Y, Jiang B, Hao H, et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew Chem Int Ed 2023; 62: e202301879 [CrossRef] [Google Scholar]
- Guan S, Yuan Z, Zhuang Z, et al. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene? Angew Chem Int Ed 2024; 63: e202316550 [CrossRef] [Google Scholar]
- Chen S, Ye C, Wang Z, et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew Chem Int Ed 2023; 62: e202315621 [CrossRef] [PubMed] [Google Scholar]
- Singh N, Son S, An J, et al. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem Soc Rev 2021; 50: 12883-12896. [Article] [CrossRef] [PubMed] [Google Scholar]
- Singh N, Kim J, Kim J, et al. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater 2023; 21: 358-380 [PubMed] [Google Scholar]
- Naahidi S, Jafari M, Edalat F, et al. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013; 166: 182-194. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li X, Wang L, Fan Y, et al. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 2012; 2012: 548389 [CrossRef] [Google Scholar]
- Wang L, Wang D, Li Y. Single‐atom catalysis for carbon neutrality. Carbon Energy 2022; 4: 1021-1079. [Article] [CrossRef] [Google Scholar]
- Wang L, Wu J, Wang S, et al. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res 2024; 17: 3261-3301. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gan T, Wang D. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res 2024; 17: 18-38. [Article] [CrossRef] [Google Scholar]
- A-Wu Z, Ding-Sheng W, Ya-Dong L. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microst 2022; 2: 2022005 [Google Scholar]
- Liang M, Fan K, Zhou M, et al. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci USA 2014; 111: 14900-14905. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu P, Xiong X, Wang D. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res 2022; 15: 5792-5815. [Article] [CrossRef] [Google Scholar]
- Wang Y, Zheng X, Wang D. Design concept for electrocatalysts. Nano Res 2022; 15: 1730-1752. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Guo Y, Liu Z, Zhou D, et al. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci China Mater 2024; 67: 1706-1720. [Article] [CrossRef] [Google Scholar]
- Yang J, Zhu C, Wang D. A simple organo-electrocatalysis system for the chlor-related industry. Angew Chem Int Ed 2024; 63: e202406883 [CrossRef] [Google Scholar]
- Zheng X, Li B, Wang Q, et al. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res 2022; 15: 7806-7839. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li R, Wang D. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res 2022; 15: 6888-6923. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xiao L, Bai X, Han J, et al. Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media. Nano Res 2024; 17: 2429-2437. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu S, Shuai Y, Qi X, et al. Unlocking high-efficiency oxygen evolution reaction through Co-N coordination engineering in Co@N-doped porous carbon core-shell nanoparticles. Nano Res 2024; 17: 7068-7076. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang M, Zhou D, Mu X, et al. Regulating the critical intermediates of dual‐atom catalysts for CO2 electroreduction. Small 2024; 20: 2402050. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Liu L, Li Y, et al. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J Energy Chem 2024; 91: 36-49. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang GH, Zhang Z, Yin CC, et al. Morphology engineering for covalent organic frameworks (COFs) by surfactant mediation and acid adjustment. Chin J Polym Sci 2022; 40: 338-344. [Article] [CrossRef] [Google Scholar]
- Vallet-Regí M, Schüth F, Lozano D, et al. Engineering mesoporous silica nanoparticles for drug delivery: Where are we after two decades? Chem Soc Rev 2022; 51: 5365-5451 [CrossRef] [PubMed] [Google Scholar]
- Chen L, Wang W, Tian J, et al. Imparting multi-functionality to covalent organic framework nanoparticles by the dual-ligand assistant encapsulation strategy. Nat Commun 2021; 12: 4556-4566. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang L, Zhang L, Wan S, et al. Two‐photon absorption induced cancer immunotherapy using covalent organic frameworks. Adv Funct Mater 2021; 31: 2103056. [Article] [CrossRef] [Google Scholar]
- Ge Y, Meng Y, Liu L, et al. Mechanochemical strategy assisted morphology recombination of COFs for promoted kinetics and LiPS transformation in Li–S batteries. Green Energy Environ 2023,. [Article] [Google Scholar]
- Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. Inorg Nano-Metal Chem 2022,. [Article] [Google Scholar]
- Li WY, Wan JJ, Kan JL, et al. A biodegradable covalent organic framework for synergistic tumor therapy. Chem Sci 2023; 14: 1453-1460. [Article] [CrossRef] [PubMed] [Google Scholar]
- Du Q, Zou J, Huang Z, et al. Fabrication of microwave-sensitized nanospheres of covalent organic framework with apatinib for tumor therapy. Chin Chem Lett 2023; 34: 107763. [Article] [CrossRef] [Google Scholar]
- Song S, Wang D, Zhao K, et al. Donor-acceptor structured photothermal COFs for enhanced starvation therapy. Chem Eng J 2022; 442: 135963. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gong P, Zhao K, Liu X, et al. Fluorescent COFs with a highly conjugated structure for combined starvation and gas therapy. ACS Appl Mater Interfaces 2022; 14: 46201-46211. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huo T, Yang Y, Qian M, et al. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials 2020; 260: 120305. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tang Y, Ge L, Jiang L, et al. Pore-enhanced reactive oxygen species generation by using covalent organic frameworks for improving sonodynamic therapy of cancer. Nano Today 2024; 55: 102166. [Article] [CrossRef] [Google Scholar]
- Wang D, Lin L, Li T, et al. Etching bulk covalent organic frameworks into nanoparticles of uniform and controllable size by the molecular exchange etching method for sonodynamic and immune combination antitumor therapy. Adv Mater 2022; 34: 2205924. [Article] [CrossRef] [Google Scholar]
- Gao P, Shen X, Liu X, et al. Nucleic acid-gated covalent organic frameworks for cancer-specific imaging and drug release. Anal Chem 2021; 93: 11751-11757. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hao K, Guo Z, Lin L, et al. Covalent organic framework nanoparticles for anti-tumor gene therapy. Sci China Chem 2021; 64: 1235-1241. [Article] [CrossRef] [Google Scholar]
- Gao P, Wang M, Chen Y, et al. A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chem Sci 2020; 11: 6882-6888. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lu Z, Bai S, Jiang Y, et al. Porphyrin‐based covalent organic framework for imaging‐guided cancer combinatorial immuno‐sonodynamic therapy. Adv Funct Mater 2022; 32: 2207749. [Article] [CrossRef] [Google Scholar]
- Chen S, Sun T, Zheng M, et al. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy. Adv Funct Mater 2020; 30: 2004680. [Article] [CrossRef] [Google Scholar]
- Chen P, Li Y, Dai Y, et al. Porphyrin-based covalent organic frameworks as doxorubicin delivery system for chemo-photodynamic synergistic therapy of tumors. Photodiagnosis Photodynamic Ther 2024; 46: 104063. [Article] [CrossRef] [Google Scholar]
- Shi Y, Liu S, Zhang Z, et al. Template-free synthesis and metalation of hierarchical covalent organic framework spheres for photothermal therapy. Chem Commun 2019; 55: 14315-14318. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pang Y, Lv J, He C, et al. Covalent organic frameworks-derived carbon nanospheres based nanoplatform for tumor specific synergistic therapy via oxidative stress amplification and calcium overload. J Colloid Interface Sci 2024; 661: 908-922. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Wen Z, Pan L, et al. An intercalated covalent organic framework with donor-acceptor property for photothermal therapy. Mater Today Nano 2023; 24: 100418. [Article] [CrossRef] [Google Scholar]
- Zhou S, Tian T, Meng T, et al. Tumor-derived covalent organic framework nanozymes for targeted chemo-photothermal combination therapy. iScience 2023; 26: 107348. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang K, Zhang Z, Lin L, et al. Cyanine-assisted exfoliation of covalent organic frameworks in nanocomposites for highly efficient chemo-photothermal tumor therapy. ACS Appl Mater Interfaces 2019; 11: 39503-39512. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gao P, Wei R, Cui B, et al. Ultrathin functionalized covalent organic framework nanosheets for tumor-targeted photodynamic therapy. Chem Commun 2021; 57: 6082-6085. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen Y, Wu T, Liu S, et al. Cell membrane-anchoring covalent organic framework nanosheets for single-laser-triggered synergistic tumor therapy. Chem Commun 2021; 57: 11685-11688. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mi Z, Yang P, Wang R, et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J Am Chem Soc 2019; 141: 14433-14442. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hassan A, Roy S, Das A, et al. Covalent organic frameworks as potential drug carriers and chemotherapeutic agents for ovarian cancers. ACS Biomater Sci Eng 2024; 10: 4227-4236. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wan X, Yin J, Yan Q, et al. Sustained-release nanocapsule based on a 3D COF for long-term enzyme prodrug therapy of cancer. Chem Commun 2022; 58: 5877-5880. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Zhang L, Wang Z, et al. Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. Biomaterials 2019; 223: 119462. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhen W, Kang DW, Fan Y, et al. Simultaneous protonation and metalation of a porphyrin covalent organic framework enhance photodynamic therapy. J Am Chem Soc 2024; 146: 16609-16618. [Article] [CrossRef] [Google Scholar]
- Wang J, Bai L, Huang T, et al. A singlet oxygen-storing covalent organic framework for “Afterglow” photodynamic therapy. J Colloid Interface Sci 2024; 673: 679-689. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wan X, Zheng T, Wang D, et al. GSH-Triggered NO releasing nanoplatform based on a covalent organic framework for “1 + 1 > 2” synergistic cancer therapy. Chem Commun 2022; 58: 11803-11806. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Yang QC, Wang S, et al. Engineering multienzyme‐mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv Mater 2022; 34: 2108174. [Article] [CrossRef] [Google Scholar]
- Yao S, Zhao X, Wan X, et al. π–π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework. Mater Horiz 2021; 8: 3457-3467. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yu Y, Zhang G, Li Z, et al. Designed fabrication of active tumor targeting covalent organic framework nanotherapeutics via a simple post-synthetic strategy. Nano Res 2023; 16: 7085-7094. [Article] [CrossRef] [Google Scholar]
- Yang J, Wang C, Shi S, et al. Nanotechnologies for enhancing cancer immunotherapy. Nano Res 2020; 13: 2595-2616. [Article] [CrossRef] [Google Scholar]
- Chen F, Mu X, Zhou J, et al. Engineering the active sites ofMOF‐derived catalysts: From oxygen activation to activate metal‐air batteries. Chin J Chem 2024; 42: 2520-2535. [Article] [CrossRef] [Google Scholar]
- Wang S, Zhang M, Mu X, et al. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc–air battery performance. Energy Environ Sci 2024; 17: 4847-4870. [Article] [CrossRef] [Google Scholar]
- Chen W, Yu M, Liu S, et al. Recent progress of Ru single‐atom catalyst: Synthesis, modification, and energetic applications. Adv Funct Mater 2024; 34: 2313307. [Article] [CrossRef] [Google Scholar]
- Mu X, Zhang X, Chen Z, et al. Constructing symmetry-mismatched Rux Fe3– x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett 2024; 24: 1015-1023. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Long T, Zhao Q, Yin G, et al. Regulating interfacial ion adsorption for smooth and durable zinc cycling at high area capacity. Adv Funct Mater 2024; 34: 2315539. [Article] [CrossRef] [Google Scholar]
- Yuan G, Liu YY, Xia J, et al. Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Res 2023; 16: 6881-6889. [Article] [CrossRef] [Google Scholar]
- Liu Y, Shi Y, Wang H, et al. Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation. Nano Res 2024; 17: 5835-5844. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zha X, Zuo M, Xu G, et al. Chiral transfer amidst one-dimensional linear polymers and two-dimensional network covalent organic frameworks: Striking a fine balance between helicity and crystallinity. Nano Res 2024; 17: 5726-5734. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang X, Lai Z, Ma Q, et al. Novel structured transition metal dichalcogenide nanosheets. Chem Soc Rev 2018; 47: 3301-3338. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xiao M, Wu C, Zhu J, et al. In situ generated layered NiFe-LDH/MOF heterostructure nanosheet arrays with abundant defects for efficient alkaline and seawater oxidation. Nano Res 2023; 16: 8945-8952. [Article] [CrossRef] [Google Scholar]
- Wang K, Liu L, Song A, et al. Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets. Nano Res 2022; 15: 4700-4709. [Article] [CrossRef] [Google Scholar]
- Zhou Y, Chen L, Sheng L, et al. Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Res 2022; 15: 7994-8000. [Article] [CrossRef] [Google Scholar]
- Ge S, Wang X, Zhao X, et al. Responsive multi‐arm PEG‐modified COF nanocomposites: Dynamic photothermal, pH/ROS dual‐responsive, targeted carriers for rheumatoid arthritis treatment. Adv Healthcare Mater 2024; : 2401744. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng Y, Li J, Ye S, et al. Growing COFs in situ on CdS nanorods as core–shell heterojunctions to improve the charge separation efficiency. Sustain Energy Fuels 2022; 6: 5089-5099. [Article] [CrossRef] [Google Scholar]
- Tai Y, Chen Z, Luo T, et al. MOF@COF nanocapsules enhance soft tissue sarcoma treatment: Synergistic effects of photodynamic therapy and PARP inhibition on tumor growth suppression and immune response activation. Adv Healthcare Mater 2024; 13: 2303911. [Article] [CrossRef] [Google Scholar]
- Xiong Z, Sun B, Zou H, et al. Amorphous-to-crystalline transformation: General synthesis of hollow structured covalent organic frameworks with high crystallinity. J Am Chem Soc 2022; 144: 6583-6593. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tao D, Feng L, Chao Y, et al. Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy. Adv Funct Mater 2018; 28: 1804901. [Article] [CrossRef] [Google Scholar]
- Feng J, Ren WX, Kong F, et al. Nanoscale covalent organic framework for the low-temperature treatment of tumor growth and lung metastasis. Sci China Mater 2022; 65: 1122-1133. [Article] [CrossRef] [Google Scholar]
- Zheng X, Wang L, Guan Y, et al. Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy. Biomaterials 2020; 235: 119792. [Article] [CrossRef] [PubMed] [Google Scholar]
- Guan Q, Zhou L-L, Dong Y-B. Construction of nanoscale covalent organic frameworks via photocatalysis-involved cascade reactions for tumor-selective treatment. Adv Ther-Germany 2022; 5: 2270003 [CrossRef] [Google Scholar]
- Liu S, Liu Y, Hu C, et al. Boosting the antitumor efficacy over a nanoscale porphyrin-based covalent organic polymer via synergistic photodynamic and photothermal therapy. Chem Commun 2019; 55: 6269-6272. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tong X, Gan S, Wu J, et al. A nano-photosensitizer based on covalent organic framework nanosheets with high loading and therapeutic efficacy. Nanoscale 2020; 12: 7376-7382. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu S, Hu C, Liu Y, et al. One‐pot synthesis of DOX@covalent organic framework with enhanced chemotherapeutic efficacy. Chem Eur J 2019; 25: 4315-4319. [Article] [CrossRef] [PubMed] [Google Scholar]
- Guan Q, Zhou L, Lv F, et al. A glycosylated covalent organic framework equipped with BODIPY and CaCO3 for synergistic tumor therapy. Angew Chem Int Ed 2020; 59: 18042-18047. [Article] [CrossRef] [PubMed] [Google Scholar]
- Youn YS, Bae YH. Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliver Rev 2018; 130: 3-11. [Article] [Google Scholar]
- Zhao K, Gong P, Huang J, et al. Fluorescence turn-off magnetic COF composite as a novel nanocarrier for drug loading and targeted delivery. Microporous Mesoporous Mater 2021; 311: 110713. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang P, Zhou F, Guan K, et al. In vivo therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform. Chem Sci 2020; 11: 1299-1306. [Article] [CrossRef] [Google Scholar]
- Li S, Chen Z, Tan L, et al. MOF@COF nanocapsule for the enhanced microwave thermal-dynamic therapy and anti-angiogenesis of colorectal cancer. Biomaterials 2022; 283: 121472. [Article] [CrossRef] [PubMed] [Google Scholar]
- Luo F, Fan Z, Yin W, et al. pH-responsive stearic acid-O-carboxymethyl chitosan assemblies as carriers delivering small molecular drug for chemotherapy. Mater Sci Eng-C 2019; 105: 110107. [Article] [CrossRef] [Google Scholar]
- Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33: 941-951. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu W, Ma X, Kheyr SM, et al. Covalent organic frameworks as nanocarriers for improved delivery of chemotherapeutic agents. Materials 2022; 15: 7215-7239. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Qu Y, Chu B, Wei X, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J Control Release 2019; 296: 93-106. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Zuo X, Li Q, et al. Nucleic acids analysis. Sci China Chem 2021; 64: 171-203. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang C, Liu H, Liu S, et al. pH and redox dual-sensitive covalent organic framework nanocarriers to resolve the dilemma between extracellular drug loading and intracellular drug release. Front Chem 2020; 8: 488-499. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Jia Y, Hao H, et al. Mitochondria-targeted liposome-enveloped covalent organic framework co-delivery system for enhanced tumor therapy. Microporous Mesoporous Mater 2022; 344: 112198. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Heusch G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 2020; 17: 773-789 [CrossRef] [PubMed] [Google Scholar]
- Yang B, Chen Y, Shi J. Nanocatalytic medicine. Adv Mater 2019; 31: 1901778. [Article] [CrossRef] [Google Scholar]
- Ranji-Burachaloo H, Gurr PA, Dunstan DE, et al. Cancer treatment through nanoparticle-facilitated fenton reaction. ACS Nano 2018; 12: 11819-11837. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gao P, Pan W, Li N, et al. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10: 6035-6071. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tang Z, Liu Y, He M, et al. Chemodynamic therapy: Tumour microenvironment‐mediated fenton and fenton‐like reactions. Angew Chem Int Ed 2019; 58: 946-956. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang B, Shi J. Ascorbate tumor chemotherapy by an iron-engineered nanomedicine-catalyzed tumor-specific pro-oxidation. J Am Chem Soc 2020; 142: 21775-21785. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Wang Y, Williams GR, et al. Multicomponent transition metal dichalcogenide nanosheets for imaging‐guided photothermal and chemodynamic therapy. Adv Sci 2020; 7: 2000272. [Article] [CrossRef] [Google Scholar]
- Sun S, Chen Q, Tang Z, et al. Tumor microenvironment stimuli‐responsive fluorescence imaging and synergistic cancer therapy by carbon‐dot–Cu2+ nanoassemblies. Angew Chem Int Ed 2020; 59: 21041-21048. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou L, Guan Q, Li W, et al. A ferrocene‐functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis. Small 2021; 17: 2101368. [Article] [CrossRef] [PubMed] [Google Scholar]
- Leith GA, Berseneva AA, Mathur A, et al. A multivariate toolbox for donor–acceptor alignment: MOFs and COFs. Trends Chem 2020; 2: 367-382. [Article] [CrossRef] [Google Scholar]
- Gao P, Zheng T, Cui B, et al. Reversing tumor multidrug resistance with a catalytically active covalent organic framework. Chem Commun 2021; 57: 13309-13312. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dong F, Jiang Q, Li L, et al. Synergetic lethal energy depletion initiated by cancer cell membrane camouflaged nano-inhibitor for cancer therapy. Nano Res 2022; 15: 3422-3433. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pallares RM, Abergel RJ. Nanoparticles for targeted cancer radiotherapy. Nano Res 2020; 13: 2887-2897. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cai L, Hu C, Liu S, et al. A covalent organic framework-based multifunctional therapeutic platform for enhanced photodynamic therapy via catalytic cascade reactions. Sci China Mater 2021; 64: 488-497. [Article] [CrossRef] [Google Scholar]
- Hu C, Zhang Z, Liu S, et al. Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy. ACS Appl Mater Interfaces 2019; 11: 23072-23082. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Zhao X, Meng H, et al. Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue. Nano Res 2023; 16: 6160-6166. [Article] [CrossRef] [Google Scholar]
- Han X, Ge X, He WW, et al. Covalent triazine frameworks modified by ultrafine Pt nanoparticles for efficient photocatalytic hydrogen production. Nano Res 2024; 17: 4908-4915. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen Y, Li L, Chen W, et al. Near-infrared small molecular fluorescent dyes for photothermal therapy. Chin Chem Lett 2019; 30: 1353-1360. [Article] [CrossRef] [Google Scholar]
- Moharramnejad M, Malekshah RE, Salariyeh Z, et al. The synthetic strategies of COFs, for drug delivery, photo/sono-dynamic, photo/microwave thermal and combined therapy. Inorg Chem Commun 2023; 153: 110888. [Article] [CrossRef] [Google Scholar]
- Yang D, Li ZG, Zhang X, et al. Rational design of ZnCdS/TpPa-1-COF heterostructure photocatalyst by strengthening the interface connection in solar hydrogen production reactions. Nano Res 2024; 17: 1027-1034. [Article] [CrossRef] [Google Scholar]
- Chen Z, Liu L, Liang R, et al. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano 2018; 12: 8633-8645. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li X, Kwon N, Guo T, et al. Innovative strategies for hypoxic‐tumor photodynamic therapy. Angew Chem Int Ed 2018; 57: 11522-11531. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Z, Ni D, Wang F, et al. In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Res 2020; 13: 3217-3223. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang SB, Chen ZX, Gao F, et al. Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy. Biomaterials 2020; 234: 119772. [Article] [CrossRef] [PubMed] [Google Scholar]
- Han Z, Qian Y, Gao X, et al. Hypoxia-responsive covalent organic framework by single NIR laser-triggered for multimodal synergistic therapy of triple-negative breast cancer. Colloids Surfs B-Biointerfaces 2023; 222: 113094. [Article] [CrossRef] [Google Scholar]
- Benyettou F, Das G, Nair AR, et al. Covalent organic framework embedded with magnetic nanoparticles for MRI and chemo-thermotherapy. J Am Chem Soc 2020; 142: 18782-18794. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang P, Zhou F, Yin X, et al. Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Res 2022; 15: 9264-9273. [Article] [CrossRef] [Google Scholar]
- Luan TX, Du L, Wang JR, et al. Highly effective generation of singlet oxygen by an imidazole-linked robust photosensitizing covalent organic framework. ACS Nano 2022; 16: 21565-21575. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wan X, Zhang H, Yan Q, et al. Three-dimensional covalent organic frameworks as enzyme nanoprotector: Preserving the activity of catalase in acidic environment for hypoxia cancer therapy. Mater Today Nano 2022; 19: 100236. [Article] [CrossRef] [Google Scholar]
- Xiong M, Rong Q, Kong G, et al. Hybridization chain reaction-based nanoprobe for cancer cell recognition and amplified photodynamic therapy. Chem Commun 2019; 55: 3065-3068. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tatsuno K, Yamazaki T, Hanlon D, et al. Extracorporeal photochemotherapy induces bona fide immunogenic cell death. Cell Death Dis 2019; 10: 578-589. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen L, Zhang J, Cai K, et al. Molecular engineering of covalent organic frameworks with elevated mitochondrial-targeting for cancer cell suppression. Sens Actuat B-Chem 2022; 350: 130861. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lin Q, Zhao J, Zhang P, et al. Highly selective photocatalytic reduction of CO2 to CH4 on electron‐rich Fe species cocatalyst under visible light irradiation. Carbon Energy 2024; 6: e435. [Article] [CrossRef] [Google Scholar]
- Wei W, Zhang X, Zhang S, et al. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Mater Sci Eng-C 2019; 104: 109891. [Article] [CrossRef] [Google Scholar]
- Li X, Zhou J, Yin W, et al. Fully conjugated radical-doped COF for near-infrared photothermal conversion, C-3 thiocyanation of indoles and oxidative coupling of amines. J Catal 2024; 437: 115640. [Article] [CrossRef] [Google Scholar]
- Ahmad M, Chen J, Liu J, et al. Metal‐organic framework‐based single‐atom electro‐/photocatalysts: Synthesis, energy applications, and opportunities. Carbon Energy 2024; 6: e382. [Article] [CrossRef] [Google Scholar]
- Guo Y, Li H, Ma W, et al. Photocatalytic activity enhanced via surface hybridization. Carbon Energy 2020; 2: 308-349. [Article] [CrossRef] [Google Scholar]
- Sun Q, Tang K, Song L, et al. Covalent organic framework based nanoagent for enhanced mild-temperature photothermal therapy. Biomater Sci 2021; 9: 7977-7983. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang D, Teng J, Yang H, et al. Air‐condition process for scalable fabrication of CdS/ZnS 1D/2D heterojunctions toward efficient and stable photocatalytic hydrogen production. Carbon Energy 2023; 5: e277. [Article] [CrossRef] [Google Scholar]
- Xia R, Zheng X, Li C, et al. Nanoscale covalent organic frameworks with donor–acceptor structure for enhanced photothermal ablation of tumors. ACS Nano 2021; 15: 7638-7648. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Wu G, Liu H, et al. Donor–acceptor based two-dimensional covalent organic frameworks for near-infrared photothermal conversion. Mater Chem Front 2021; 5: 6575-6581. [Article] [CrossRef] [Google Scholar]
- Zhu X, Feng T, Chen Y, et al. Reactive oxygen‐correlated photothermal imaging of smart COF nanoreactors for monitoring chemodynamic sterilization and promoting wound healing. Small 2024; 20: 2310247. [Article] [CrossRef] [Google Scholar]
- Hiragond CB, Biswas S, Powar NS, et al. Surface‐modified Ag@Ru‐P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid–gas interface. Carbon Energy 2024; 6: e386. [Article] [CrossRef] [Google Scholar]
- Ma M, Li J, Zhu X, et al. Enhancing multifunctional photocatalysis with acetate‐assisted cesium doping and unlocking the potential of Z‐scheme solar water splitting. Carbon Energy 2024; 6: e447. [Article] [CrossRef] [Google Scholar]
- Liu Y, Wang H, Li S, et al. In situ supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nat Commun 2020; 11: 1724. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hu Q, Huang Z, Duan Y, et al. Reprogramming tumor microenvironment with photothermal therapy. Bioconjugate Chem 2020; 31: 1268-1278. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Yang LL, Wan SC, et al. Three-dimensional covalent organic frameworks with cross-linked pores for efficient cancer immunotherapy. Nano Lett 2021; 21: 7979-7988. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li B, Gong T, Xu N, et al. Improved stability and photothermal performance of polydopamine‐modified Fe3 O4 nanocomposites for highly efficient magnetic resonance imaging‐guided photothermal therapy. Small 2020; 16: 2003969. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li B, Lv YK, Wang ZD, et al. Edge confined covalent organic framework with efficient biocompatibility and photothermic conversion. Nano Today 2021; 37: 101101. [Article] [CrossRef] [Google Scholar]
- Shi M, Fu Z, Pan W, et al. A protein‐binding molecular photothermal agent for tumor ablation. Angew Chem Int Ed 2021; 60: 13564-13568. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu K, Xie L, Zhang Y, et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat Commun 2020; 11: 2778-2793. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Xue KF, Yang Y, et al. In situ hypoxia-induced supramolecular perylene diimide radical anions in tumors for photothermal therapy with improved specificity. J Am Chem Soc 2022; 144: 2360-2367. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xia R, Li C, Yuan X, et al. Facile preparation of a thienoisoindigo-based nanoscale covalent organic framework with robust photothermal activity for cancer therapy. ACS Appl Mater Interfaces 2022; 14: 19129-19138. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gong H, Wang T, Chang K, et al. Revealing the illumination effect on the discharge products in high‐performance Li–O2 batteries with heterostructured photocatalysts. Carbon Energy 2022; 4: 1169-1181. [Article] [CrossRef] [Google Scholar]
- Hu J, Hu J, Wu W, et al. Bimodal treatment of hepatocellular carcinoma by targeted minimally interventional photodynamic/chemotherapy using glyco-covalent-organic frameworks-guided porphyrin/sorafenib. Acta BioMater 2022; 148: 206-217. [Article] [CrossRef] [PubMed] [Google Scholar]
- Qiu M, Ren WX, Jeong T, et al. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev 2018; 47: 5588-5601. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tan X‐, Ng S‐, Mohamed AR, et al. Point‐to‐face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g‐C3 N4 towards photocatalytic energy applications. Carbon Energy 2022; 4: 665-730. [Article] [CrossRef] [Google Scholar]
- He H, Du L, Xue H, et al. Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy. Acta Biomater 2022; 149: 297-306. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng J, Ren WX, Kong F, et al. A covalent organic framework-based nanoagent for H2 S-activable phototherapy against colon cancer. Chem Commun 2021; 57: 7240-7243. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sher Shah MSA, Jung H, Paidi VK, et al. Fine‐tuning electronic structure of N‐doped graphitic carbon‐supported Co‐ and Fe‐incorporated Mo2 C to achieve ultrahigh electrochemical water oxidation activity. Carbon Energy 2024; 6: e488. [Article] [CrossRef] [Google Scholar]
- Xu J, Xu Y, Sun L, et al. Glucose oxidase loaded Cu2+ based metal-organic framework for glutathione depletion/reactive oxygen species elevation enhanced chemotherapy. Biomed Pharmacother 2021; 141: 111606. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou Y, Liu S, Hu C, et al. A covalent organic framework as a nanocarrier for synergistic phototherapy and immunotherapy. J Mater Chem B 2020; 8: 5451-5459. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Yang K, Wang J, et al. Hypoxia-triggered degradable porphyrinic covalent organic framework for synergetic photodynamic and photothermal therapy of cancer. Mater Today Bio 2024; 25: 100981. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu H, Aizpurua J, Käll M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 2000; 62: 4318-4324. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang S, Pang Y, Hu S, et al. Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer. Chem Eng J 2023; 451: 138864. [Article] [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.