Issue |
Natl Sci Open
Volume 3, Number 6, 2024
Special Topic: Key Materials for Carbon Neutrality
|
|
---|---|---|
Article Number | 20240047 | |
Number of page(s) | 37 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20240047 | |
Published online | 28 October 2024 |
- Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017; 355: eaad4998. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tang C, Zheng Y, Jaroniec M, et al. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew Chem Int Ed 2021; 60: 19572-19590. [Article] [CrossRef] [PubMed] [Google Scholar]
- Malik B, Vijaya Sankar K, Aziz SKT, et al. Uncovering the change in catalytic activity during electro-oxidation of urea: Answering overisolation of the relaxation phenomenon. J Phys Chem C 2021; 125: 23126-23132. [Article] [CrossRef] [Google Scholar]
- Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater 2017; 16: 16-22. [Article] [CrossRef] [Google Scholar]
- Masaud ZLiu GRoseng LE et al. Progress on pulsed electrocatalysis for sustainable energy and environmental applications. Chem Eng J 2023; 475: 145882. [NASA ADS] [CrossRef] [Google Scholar]
- Jiang R, Wang H, Liu L, et al. Recent progress of Rh-based three-way catalysts. Smart Molecules 2024; 2: 20240004 [CrossRef] [Google Scholar]
- Akhade SA, Singh N, Gutiérrez OY, et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem Rev 2020; 120: 11370-11419. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Liao Y, Chen S. Facile synthesis of platinum-copper aerogels for the oxygen reduction reaction. Energy Mater 2022; 2: 200033. [Article] [CrossRef] [Google Scholar]
- Jin B, Gao J, Zhang Y, et al. Deprotonated of layered double hydroxides during electrocatalytic water oxidation for multi‐cations intercalation. Smart Molecules 2024; 2: e20230026. [Article] [CrossRef] [Google Scholar]
- Novaes LFT, Liu J, Shen Y, et al. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50: 7941-8002. [Article] [CrossRef] [PubMed] [Google Scholar]
- Casebolt R, Levine K, Suntivich J, et al. Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. Joule 2021; 5: 1987-2026. [Article] [CrossRef] [Google Scholar]
- Wang J, Zhou W, Li J, et al. Recent advances and performance enhancement mechanisms of pulsed electrocatalysis. Acta Chim Sin 2022; 80: 1555-1568. [Article] [CrossRef] [Google Scholar]
- Yang Y, Yang Y, Pei Z, et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020; 3: 1442-1476. [Article] [CrossRef] [Google Scholar]
- Liu Y, Yang Z, Zou Y, et al. Interfacial micro‐environment of electrocatalysis and its applications for organic electro‐oxidation reaction. Small 2023; 20: 2306488. [Article] [Google Scholar]
- Medford AJ, Vojvodic A, Hummelshøj JS, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 2015; 328: 36-42. [Article] [CrossRef] [Google Scholar]
- An Z, Zhang Z, Huang Z, et al. Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat Commun 2022; 13: 5467. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Wang B, Zhang F. Main descriptors to correlate structures with the performances of electrocatalysts. Angew Chem Int Ed 2022; 61: e202111026. [Article] [CrossRef] [Google Scholar]
- Wang PY, Zhou JF, Chen H, et al. Activation of H2 O tailored by interfacial electronic states at a nanoscale interface for enhanced electrocatalytic hydrogen evolution. JACS Au 2022; 2: 1457-1471. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim C, Bui JC, Luo X, et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat Energy 2021; 6: 1026-1034. [Article] [CrossRef] [Google Scholar]
- Xie C, Niu Z, Kim D, et al. Surface and interface control in nanoparticle catalysis. Chem Rev 2020; 120: 1184-1249 [CrossRef] [PubMed] [Google Scholar]
- Li P, Jiang Y, Hu Y, et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat Catal 2022; 5: 900-911. [Article] [CrossRef] [Google Scholar]
- Rodrigo S, Um C, Mixdorf JC, et al. Alternating current electrolysis for organic electrosynthesis: Trifluoromethylation of (hetero)arenes. Org Lett 2020; 22: 6719-6723. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yan M, Kawamata Y, Baran PS. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem Rev 2017; 117: 13230-13319. [Article] [CrossRef] [PubMed] [Google Scholar]
- Amirbeigiarab R, Tian J, Herzog A, et al. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat Catal 2023; 6: 837-846. [Article] [CrossRef] [Google Scholar]
- Timoshenko J, Bergmann A, Rettenmaier C, et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat Catal 2022; 5: 259-267. [Article] [CrossRef] [Google Scholar]
- Li P, Li R, Liu Y, et al. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J Am Chem Soc 2023; 145: 6471-6479. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nong HN, Falling LJ, Bergmann A, et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020; 587: 408-413. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu C, Hsu PC, Xie J, et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2017; 2: 17007. [Article] [CrossRef] [Google Scholar]
- Liu T, Wang J, Yang X, et al. A review of pulse electrolysis for efficient energy conversion and chemical production. J Energy Chem 2021; 59: 69-82. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Butler JAV, Armstrong G. The kinetics of electrode processes. Part II.—Reversible reduction and oxidation processes. Proc R Soc Lond A Math Phys Sci 1933; 139: 406-416 [NASA ADS] [Google Scholar]
- Viswanathan K, Cheh HY. Mass transfer aspects of electrolysis by periodic currents. J Electrochem Soc 1979; 126: 398-401. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shipley JW, Rogers MT. The electrolysis of some organic compounds with alternating current. Can J Res 1939; 17b: 147-158. [Article] [CrossRef] [Google Scholar]
- García CD, Henry CS. Coupling capillary electrophoresis and pulsed electrochemical detection. Electroanalysis 2005; 17: 1125-1131 [CrossRef] [Google Scholar]
- Fedorowski J, LaCourse WR. A review of pulsed electrochemical detection following liquid chromatography and capillary electrophoresis. Anal Chim Acta 2015; 861: 1-11. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Karaman C, Karaman O, Yola BB, et al. A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticle-decorated porous graphene nanoribbon and Ag nanocube-incorporated MoS2 nanosheets. New J Chem 2021; 45: 11222-11233. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Xu G, Jarjes ZA, Desprez V, et al. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 2018; 107: 184-191. [Article] [CrossRef] [PubMed] [Google Scholar]
- Davalos R, Huang Y, Rubinsky BE. Electroporation: Bio-electrochemical mass transfer at the nano scale. Microscale Thermophys Eng 2000; 4: 147-159. [Article] [CrossRef] [Google Scholar]
- Sadik MM, Yu M, Zheng M, et al. Scaling relationship and optimization of double-pulse electroporation. Biophys J 2014; 106: 801-812. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jadhav HS, Kalubarme RS, Ahn SJ, et al. Effects of duty cycle on properties of CIGS thin films fabricated by pulse-reverse electrodeposition technique. Appl Surf Sci 2013; 268: 391-396. [Article] [CrossRef] [Google Scholar]
- Seetharaman S, Balaji R, Ramya K, et al. Electrochemical behaviour of nickel-based electrodes for oxygen evolution reaction in alkaline water electrolysis. Ionics 2014; 20: 713-720. [Article] [CrossRef] [Google Scholar]
- Puippe JC, Ibl N. Influence of charge and discharge of electric double layer in pulse plating. J Appl Electrochem 1980; 10: 775-784. [Article] [Google Scholar]
- Rodrigo S, Gunasekera D, Mahajan JP, et al. Alternating current electrolysis for organic synthesis. Curr Opin Electrochem 2021; 28: 100712. [Article] [CrossRef] [Google Scholar]
- Hioki Y, Costantini M, Griffin J, et al. Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis. Science 2023; 380: 81-87. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kawamata Y, Hayashi K, Carlson E, et al. Chemoselective electrosynthesis using rapid alternating polarity. J Am Chem Soc 2021; 143: 16580-16588. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zeng L, Jiao Y, Yan W, et al. Asymmetric-waveform alternating current-promoted silver catalysis for C–H phosphorylation. Nat Synth 2023; 2: 172-181. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Demir N, Kaya MF, Albawabiji MS. Effect of pulse potential on alkaline water electrolysis performance. Int J Hydrogen Energy 2018; 43: 17013-17020. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Vincent I, Choi B, Nakoji M, et al. Pulsed current water splitting electrochemical cycle for hydrogen production. Int J Hydrogen Energy 2018; 43: 10240-10248. [Article] [CrossRef] [Google Scholar]
- Zhang XD, Liu T, Liu C, et al. Asymmetric low-frequency pulsed strategy enables ultralong CO2 reduction stability and controllable product selectivity. J Am Chem Soc 2023; 145: 2195-2206. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Huang Y, He C, Cheng C, et al. Pulsed electroreduction of low-concentration nitrate to ammonia. Nat Commun 2023; 14: 7368. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Guo M, Fang L, Zhang L, et al. Pulsed electrocatalysis enabling high overall nitrogen fixation performance for atomically dispersed Fe on TiO2. Angew Chem 2023; 135: e202217635. [Article] [CrossRef] [Google Scholar]
- He M, Wu Y, Li R, et al. Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach. Nat Commun 2023; 14: 5088. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang J, Zhou W, Li J, et al. Insights into the effects of pulsed parameters on H2O2 synthesis by two-electron oxygen reduction under pulsed electrocatalysis. Electrochem Commun 2023; 146: 107414. [Article] [CrossRef] [Google Scholar]
- Ding Y, Zhou W, Li J, et al. Revealing the in situ dynamic regulation of the interfacial microenvironment induced by pulsed electrocatalysis in the oxygen reduction reaction. ACS Energy Lett 2023; 8: 3122-3130. [Article] [CrossRef] [Google Scholar]
- Ding Y, Xie L, Zhou W, et al. Pulsed electrocatalysis enables the stabilization and activation of carbon-based catalysts towards H2O2 production. Appl Catal B-Environ 2022; 316: 121688. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ding Y, Zhou W, Xie L, et al. Pulsed electrocatalysis enables an efficient 2-electron oxygen reduction reaction for H2 O2 production. J Mater Chem A 2021; 9: 15948-15954. [Article] [CrossRef] [Google Scholar]
- Jiani L, Zhicheng X, Hao X, et al. Pulsed electrochemical oxidation of acid red G and crystal violet by PbO2 anode. J Environ Chem Eng 2020; 8: 103773. [Article] [CrossRef] [Google Scholar]
- Zhou L, Liu D, Li S, et al. Effective removing of hexavalent chromium from wasted water by triboelectric nanogenerator driven self-powered electrochemical system—Why pulsed DC is better than continuous DC? Nano Energy 2019; 64: 103915 [CrossRef] [Google Scholar]
- Dobó Z, Palotás ÁB. Impact of the current fluctuation on the efficiency of alkaline water electrolysis. Int J Hydrogen Energy 2017; 42: 5649-5656 [CrossRef] [Google Scholar]
- Polatides C, Dortsiou M, Kyriacou G. Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochim Acta 2005; 50: 5237-5241. [Article] [CrossRef] [Google Scholar]
- Karimi S, Foulkes FR. Pulse electrodeposition of platinum catalyst using different pulse current waveforms. Electrochem Commun 2012; 19: 17-20. [Article] [CrossRef] [Google Scholar]
- Engelbrecht A, Uhlig C, Stark O, et al. On the electrochemical CO2 reduction at copper sheet electrodes with enhanced long-term stability by pulsed electrolysis. J Electrochem Soc 2018; 165: 3059-3068 [Google Scholar]
- Arán-Ais RM, Scholten F, Kunze S, et al. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat Energy 2020; 5: 317-325 [CrossRef] [Google Scholar]
- Shimizu N, Hotta S, Sekiya T, et al. A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply. J Appl Electrochem 2006; 36: 419-423. [Article] [Google Scholar]
- Dobó Z, Palotas A. Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis. Int J Hydrogen Energy 2016; 41: 11849-11856 [CrossRef] [Google Scholar]
- Xiong P, Xu HC. Chemistry with electrochemically generated N-centered radicals. Acc Chem Res 2019; 52: 3339-3350. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wattanakit C, Yutthalekha T, Asssavapanumat S, et al. Pulsed electroconversion for highly selective enantiomer synthesis. Nat Commun 2017; 8: 2087. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee B, Naito H, Nagao M, et al. Alternating-current electrolysis for the production of phenol from benzene. Angew Chem Int Ed 2012; 51: 6961-6965. [Article] [CrossRef] [PubMed] [Google Scholar]
- Blanco DE, Lee B, Modestino MA. Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc Natl Acad Sci USA 2019; 116: 17683-17689. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Blanco DE, Modestino MA. Organic electrosynthesis for sustainable chemical manufacturing. Trends Chem 2019; 1: 8-10. [Article] [CrossRef] [Google Scholar]
- Schotten C, Taylor CJ, Bourne RA, et al. Alternating polarity for enhanced electrochemical synthesis. React Chem Eng 2021; 6: 147-151. [Article] [CrossRef] [Google Scholar]
- Vehrenberg J, Vepsäläinen M, Macedo DS, et al. Steady-state electrochemical synthesis of HKUST-1 with polarity reversal. Microporous Mesoporous Mater 2020; 303: 110218. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kim D, Zhou C, Zhang M, et al. Voltage cycling process for the electroconversion of biomass-derived polyols. Proc Natl Acad Sci USA 2021; 118: e2113382118. [Article] [CrossRef] [PubMed] [Google Scholar]
- Martín-Yerga D, Yu X, Terekhina I, et al. In situ catalyst reactivation for enhancing alcohol electro-oxidation and coupled hydrogen generation. Chem Commun 2020; 56: 4011-4014 [CrossRef] [PubMed] [Google Scholar]
- Li Z, Yan Y, Xu SM, et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat Commun 2022; 13: 147. [Article] [CrossRef] [PubMed] [Google Scholar]
- Adžić RR, Popov KI, Pamić MA. Acceleration of electrocatalytic reactions by pulsation of potential: Oxidation of formic acid on Pt and Pt/Pbads electrodes. Electrochim Acta 1978; 23: 1191-1196. [Article] [CrossRef] [Google Scholar]
- Wang SR, Fedkiw PS. Pulsed-potential oxidation of methanol: I. Smooth platinum electrode with and without tin surface modification. J Electrochem Soc 1992; 139: 2519-2525. [Article] [CrossRef] [Google Scholar]
- Román AM, Spivey TD, Medlin JW, et al. Accelerating electro-oxidation turnover rates via potential-modulated stimulation of electrocatalytic activity. Ind Eng Chem Res 2020; 59: 19999-20010 [CrossRef] [Google Scholar]
- Saint-Denis TG, Zhu RY, Chen G, et al. Enantioselective C(sp3 )‒H bond activation by chiral transition metal catalysts. Science 2018; 359: eaao4798. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hickman AJ, Sanford MS. High-valent organometallic copper and palladium in catalysis. Nature 2012; 484: 177-185. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Atkins AP, Chaturvedi AK, Tate JA, et al. Pulsed electrolysis: Enhancing primary benzylic C(sp3 )–H nucleophilic fluorination. Org Chem Front 2024; 11: 802-808. [Article] [CrossRef] [PubMed] [Google Scholar]
- Monk N, Watson S. Review of pulsed power for efficient hydrogen production. Int J Hydrogen Energy 2016; 41: 7782-7791. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ma Y, Yao X, Zhang L, et al. Direct arylation of α‐amino C(sp3 )-H bonds by convergent paired electrolysis. Angew Chem Int Ed 2019; 58: 16548-16552. [Article] [Google Scholar]
- Yutthalekha T, Wattanakit C, Lapeyre V, et al. Asymmetric synthesis using chiral-encoded metal. Nat Commun 2016; 7: 12678. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hilt G. Basic strategies and types of applications in organic electrochemistry. ChemElectroChem 2020; 7: 395-405 [CrossRef] [Google Scholar]
- Lucky C, Jiang S, Shih CR, et al. Understanding the interplay between electrocatalytic C(sp3)‒C(sp3) fragmentation and oxygenation reactions. Nat Catal 2024; 7: 1021-1031. [Article] [CrossRef] [Google Scholar]
- Brix AC, Krysiak OA, Cechanaviciutè IA, et al. Oxidative depolymerisation of Kraft lignin: From fabrication of multi‐metal‐modified electrodes for vanillin electrogeneration via pulse electrolysis to high‐throughput screening of multi‐metal composites. ChemElectroChem 2024; 11: e202300483. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sattler LE, Otten CJ, Hilt G. Alternating current electrolysis for the electrocatalytic synthesis of mixed disulfide via sulfur–sulfur bond metathesis towards dynamic disulfide libraries. Chem-Eur J 2020; 26: 3129-3136 [CrossRef] [PubMed] [Google Scholar]
- Chen W, Zhang L, Xu L, et al. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat Commun 2024; 15: 2420. [Article] [Google Scholar]
- Bortnikov EO, Semenov SN. Coupling of alternating current to transition-metal catalysis: Examples of nickel-catalyzed cross-coupling. J Org Chem 2021; 86: 782-793 [CrossRef] [PubMed] [Google Scholar]
- Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 2019; 119: 7610-7672. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kuhl KP, Cave ER, Abram DN, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 2012; 5: 7050-7059. [Article] [CrossRef] [Google Scholar]
- Nguyen TP, Tuan Nguyen DM, Tran DL, et al. MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol Catal 2020; 486: 110850. [Article] [CrossRef] [Google Scholar]
- Zhou Y, Martín AJ, Dattila F, et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat Catal 2022; 5: 545-554. [Article] [CrossRef] [Google Scholar]
- Tang C, Gong P, Xiao T, et al. Direct electrosynthesis of 52% concentrated CO on silver’s twin boundary. Nat Commun 2021; 12: 2139. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhou H, Chen Z, López AV, et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat Catal 2021; 4: 860-871. [Article] [CrossRef] [Google Scholar]
- Lu D, Fu X, Guo D, et al. Challenges and opportunities in 2D high-entropy alloy electrocatalysts for sustainable energy conversion. SusMat 2023; 3: 730-748. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Möller T, Ngo Thanh T, Wang X, et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ Sci 2021; 14: 5995-6006. [Article] [CrossRef] [Google Scholar]
- Liu H, Xia J, Zhang N, et al. Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat Catal 2021; 4: 202-211. [Article] [CrossRef] [Google Scholar]
- Wang D, Mao J, Zhang C, et al. Modulating microenvironments to enhance CO2 electroreduction performance. eScience 2023; 3: 100119. [Article] [CrossRef] [Google Scholar]
- Guo Y, He X, Su Y, et al. Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. J Am Chem Soc 2021; 143: 5755-5762. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ma W, He X, Wang W, et al. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem Soc Rev 2021; 50: 12897-12914. [Article] [CrossRef] [PubMed] [Google Scholar]
- Popović S, Smiljanić M, Jovanovič P, et al. Stability and degradation mechanisms of copper‐based catalysts for electrochemical CO2 reduction. Angew Chem Int Ed 2020; 59: 14736-14746. [Article] [CrossRef] [PubMed] [Google Scholar]
- Haas T, Krause R, Weber R, et al. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 2018; 1: 32-39. [Article] [CrossRef] [Google Scholar]
- Yang Y, Louisia S, Yu S, et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023; 614: 262-269. [Article] [CrossRef] [PubMed] [Google Scholar]
- DeWulf DW, Jin T, Bard AJ. Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J Electrochem Soc 1989; 136: 1686-1691. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xie JF, Huang YX, Li WW, et al. Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochim Acta 2014; 139: 137-144. [Article] [CrossRef] [Google Scholar]
- Nogami G, Itagaki H, Shiratsuchi R. Pulsed electroreduction of CO2 on copper electrodes‐II. J Electrochem Soc 1994; 141: 1138-1142. [Article] [CrossRef] [Google Scholar]
- Wasmus S, Cattaneo E, Vielstich W. Reduction of carbon dioxide to methane and ethene—An on-line MS study with rotating electrodes. Electrochim Acta 1990; 35: 771-775. [Article] [CrossRef] [Google Scholar]
- Shiratsuchi R, Aikoh Y, Nogami G. Pulsed electroreduction of CO2 on copper electrodes. J Electrochem Soc 1993; 140: 3479-3482. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lee J, Tak Y. Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim Acta 2001; 46: 3015-3022. [Article] [CrossRef] [Google Scholar]
- Gao D, Arán-Ais RM, Jeon HS, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal 2019; 2: 198-210. [Article] [CrossRef] [Google Scholar]
- Jung H, Lee SY, Lee CW, et al. Electrochemical fragmentation of Cu2 O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J Am Chem Soc 2019; 141: 4624-4633. [Article] [CrossRef] [PubMed] [Google Scholar]
- Grosse P, Gao D, Scholten F, et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects. Angew Chem Int Ed 2018; 57: 6192-6197. [Article] [CrossRef] [PubMed] [Google Scholar]
- Timoshenko J, Rettenmaier C, Hursán D, et al. Reversible metal cluster formation on nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy. Nat Commun 2024; 15: 6111. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res 2018; 57: 2165-2177. [Article] [CrossRef] [Google Scholar]
- Lin SC, Chang CC, Chiu SY, et al. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat Commun 2020; 11: 3525. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mistry H, Varela AS, Bonifacio CS, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat Commun 2016; 7: 12123. [Article] [CrossRef] [Google Scholar]
- Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014; 508: 504-507. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yano J, Morita T, Shimano K, et al. Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes. J Solid State Electrochem 2007; 11: 554-557. [Article] [CrossRef] [Google Scholar]
- Liu C, Hedström S, Stenlid JH, et al. Amorphous, periodic model of a copper electrocatalyst with subsurface oxygen for enhanced CO coverage and dimerization. J Phys Chem C 2019; 123: 4961-4968. [Article] [CrossRef] [Google Scholar]
- Li Z, Wang L, Sun L, et al. Dynamic cation enrichment during pulsed CO2 electrolysis and the cation-promoted multicarbon formation. J Am Chem Soc 2024; 146: 23901-23908. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kimura KW, Casebolt R, Cimada DaSilva J, et al. Selective electrochemical CO2 reduction during pulsed potential stems from dynamic interface. ACS Catal 2020; 10: 8632-8639. [Article] [CrossRef] [Google Scholar]
- Bui JC, Kim C, Weber AZ, et al. Dynamic boundary layer simulation of pulsed CO2 electrolysis on a copper catalyst. ACS Energy Lett 2021; 6: 1181-1188 [Google Scholar]
- Li Z, Wang L, Wang T, et al. Steering the dynamics of reaction intermediates and catalyst surface during electrochemical pulsed CO2 reduction for enhanced C2+ selectivity. J Am Chem Soc 2023; 145: 20655-20664. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim C, Weng LC, Bell AT. Impact of pulsed electrochemical reduction of CO2 on the formation of C2+ products over Cu. ACS Catal 2020; 10: 12403-12413. [Article] [CrossRef] [Google Scholar]
- Gupta N, Gattrell M, MacDougall B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 2006; 36: 161-172. [Article] [Google Scholar]
- Kimura KW, Fritz KE, Kim J, et al. Controlled selectivity of CO2 reduction on copper by pulsing the electrochemical potential. ChemSusChem 2018; 11: 1781-1786. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kumar B, Brian JP, Atla V, et al. Controlling the product syngas H2 :CO ratio through pulsed-bias electrochemical reduction of CO2 on copper. ACS Catal 2016; 6: 4739-4745. [Article] [CrossRef] [Google Scholar]
- Jasem SM, Tseung ACC. A potentiostatic pulse study of oxygen evolution on teflon‐bonded nickel‐cobalt oxide electrodes. J Electrochem Soc 1979; 126: 1353-1360. [Article] [CrossRef] [Google Scholar]
- Shaaban AH. Water electrolysis and pulsed direct current. J Electrochem Soc 1993; 140: 2863 [NASA ADS] [CrossRef] [Google Scholar]
- de Radiguès Q, Thunis G, Proost J. On the use of 3-D electrodes and pulsed voltage for the process intensification of alkaline water electrolysis. Int J Hydrogen Energy 2019; 44: 29432-29440 [CrossRef] [Google Scholar]
- Vanags M, Kleperis J, Bajars G. Electrolyses model development for metal/electrolyte interface: Testing with microrespiration sensors. Int J Hydrogen Energy 2011; 36: 1316-1320. [Article] [CrossRef] [Google Scholar]
- Hristova D, Betova I, Tzvetkoff T. An electrochemical and analytical characterization of surface films on AISI 316 as electrode material for pulse electrolysis of water. Int J Hydrogen Energy 2013; 38: 8232-8243. [Article] [CrossRef] [Google Scholar]
- Khosla NK, Venkatachalam S, Somasundaran P. Pulsed electrogeneration of bubbles for electroflotation. J Appl Electrochem 1991; 21: 986-990. [Article] [Google Scholar]
- Lin MY, Hourng LW. Effects of magnetic field and pulse potential on hydrogen production via water electrolysis. Int J Energy Res 2014; 38: 106-116. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang F, Kim MJ, Brown M, et al. Alkaline water electrolysis at 25 A cm−2 with a microfibrous flow-through electrode. Adv Energy Mater 2020; 10: 2001174. [Article] [CrossRef] [Google Scholar]
- Chong MN, Jin B, Chow CWK, et al. Recent developments in photocatalytic water treatment technology: A review. Water Res 2010; 44: 2997-3027. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lan J, Sun Y, Huang P, et al. Using electrolytic manganese residue to prepare novel nanocomposite catalysts for efficient degradation of Azo dyes in fenton-like processes. Chemosphere 2020; 252: 126487. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sharma AK, Locke BR, Arce P, et al. A preliminary study of pulsed streamer corona discharge for the degradation of phenol in aqueous solutions. Hazard Waste Hazard Mater 1993; 10: 209-219. [Article] [CrossRef] [Google Scholar]
- Chen YS, Zhang XS, Dai YC, et al. Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution. Separation Purification Tech 2004; 34: 5-12. [Article] [CrossRef] [Google Scholar]
- Zhu X, Tong M, Shi S, et al. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environ Sci Technol 2008; 42: 4914-4920. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen X, Gao F, Chen G. Comparison of Ti/BDD and Ti/SnO2–Sb2O5 electrodes for pollutant oxidation. J Appl Electrochem 2005; 35: 185-191. [Article] [Google Scholar]
- Wei J, Zhu X, Ni J. Electrochemical oxidation of phenol at boron-doped diamond electrode in pulse current mode. Electrochim Acta 2011; 56: 5310-5315. [Article] [CrossRef] [Google Scholar]
- Pei S, You S, Zhang J. Application of pulsed electrochemistry to enhanced water decontamination. ACS EST Eng 2021; 1: 1502-1508. [Article] [CrossRef] [Google Scholar]
- Diao Y, Wei F, Zhang L, et al. The electrochemical degradation of malachite green with lead dioxide electrodes by pulse current oxidation methods. Int J Environ Anal Chem 2020; 102: 1126-1140. [Article] [Google Scholar]
- Xu J, Liu C, Hsu PC, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nat Commun 2019; 10: 2440. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tabushi I, Kobuke Y, Nishiya T. Extraction of uranium from seawater by polymer-bound macrocyclic hexaketone. Nature 1979; 280: 665-666. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen GF, Yuan Y, Jiang H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat Energy 2020; 5: 605-613. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bu Y, Wang C, Zhang W, et al. Electrical pulse‐driven periodic self‐repair of Cu‐Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew Chem Int Ed 2023; 62: e202217337. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Zhou W, Jia R, et al. Unveiling the activity origin of a copper‐based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed 2020; 59: 5350-5354. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gerke CSKlenk MZapol P et al. Pulsed-potential electrolysis enhances electrochemical C–N coupling by reorienting interfacial ions. ACS Catal 2023; 13: 1454014547. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.