Open Access
Issue |
Natl Sci Open
Volume 4, Number 1, 2025
Special Topic: Nuclear Environment Advances
|
|
---|---|---|
Article Number | 20240020 | |
Number of page(s) | 17 | |
Section | Earth and Environmental Sciences | |
DOI | https://doi.org/10.1360/nso/20240020 | |
Published online | 31 October 2024 |
- Parsons J, Buongiorno J, Corradini M, et al. A fresh look at nuclear energy. Science 2019; 363: 105. [Article] [Google Scholar]
- Wang C, Helal AS, Wang Z, et al. Uranium in situ electrolytic deposition with a reusable functional graphene‐foam electrode. Adv Mater 2021; 33: 2102633. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mazzucchi N. Nuclear power can help the democratic world achieve energy independence. Nature 2022; 606: 841 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Demski C, Poortinga W, Whitmarsh L, et al. National context is a key determinant of energy security concerns across Europe. Nat Energy 2018; 3: 882-888. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang H, Liu X, Hao M, et al. Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv Mater 2021; 33: 2106621. [Article] [CrossRef] [Google Scholar]
- Costa Peluzo BMT, Kraka E. Uranium: The nuclear fuel cycle and beyond. Int J Mol Sci 2022; 23: 4655. [Article] [Google Scholar]
- Tsouris C. Uranium extraction: Fuel from seawater. Nat Energy 2017; 2: 17022 [CrossRef] [Google Scholar]
- Wang Z, Meng Q, Ma R, et al. Constructing an ion pathway for uranium extraction from seawater. Chem 2020; 6: 1683-1691. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Abney CW, Mayes RT, Saito T, et al. Materials for the recovery of uranium from seawater. Chem Rev 2017; 117: 13935-14013. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Chen L, Qu Z, et al. Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. Chem 2023; 9: 3172-3184. [Article] [Google Scholar]
- Zhang H, Liu W, Li A, et al. Three mechanisms in one material: Uranium capture by a polyoxometalate–organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew Chem Int Ed 2019; 58: 16110-16114. [Article] [Google Scholar]
- Lin T, Chen T, Jiao C, et al. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nat Commun 2024; 15: 4149. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sharma M, Dhiware P, Laddha H, et al. Harnessing magnetically separable iron based adsorbents for enhanced uranium adsorption. Coord Chem Rev 2024; 508: 215766. [Article] [Google Scholar]
- Zhang H, Li A, Li K, et al. Ultrafiltration separation of Am(VI)-polyoxometalate from lanthanides. Nature 2023; 616: 482-487. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang Q, Luo F. Fabricating boron-functionalized covalent organic framework with remarkable potential in handling cationic, anionic, and gaseous nuclear wastes. Adv Funct Mater 2024; 34: 2401775 [CrossRef] [Google Scholar]
- Dong Z, Gao D, Li Z, et al. Harvesting the vibration energy of CdS for high-efficient piezo-photocatalysis removal of U(VI): Roles of shape dependent and piezoelectric polarization. Energy Environ Mater 2024; 7: e12705 [CrossRef] [Google Scholar]
- Liu Y, Guo XQ, Li SW, et al. Discharge of treated Fukushima nuclear accident contaminated water: Macroscopic and microscopic simulations. Natl Sci Rev 2021; 9: nwab209. [Article] [Google Scholar]
- Zhang F, Dong H, Li Y, et al. In situ metal‐oxygen‐hydrogen modified B-TiO2 @Co2 P-X S-scheme heterojunction effectively enhanced charge separation for photo‐assisted uranium reduction. Adv Sci 2024; 11: 2305439. [Article] [Google Scholar]
- Feng L, Wang H, Feng T, et al. In situ synthesis of uranyl‐imprinted nanocage for selective uranium recovery from seawater. Angew Chem Int Ed 2022; 61: e202101015. [Article] [CrossRef] [Google Scholar]
- Yuan Y, Yu Q, Cao M, et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat Sustain 2021; 4: 708-714. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hadadian M, Mallah MH, Moosavian MA, et al. Separation of uranium (VI) using dispersive liquid-liquid extraction from leach liquor. Prog Nucl Energy 2016; 90: 212-218. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Boyarintsev AV, Perevalov SA, Stepanov SI, et al. Liquid–liquid extraction of neptunium(VI) and neptunium(V) from carbonate solutions by methyltrioctylammonium carbonate in toluene. J Radioanal Nucl Chem 2021; 327: 385-393. [Article] [Google Scholar]
- Phillips DH, Gu B, Watson DB, et al. Uranium removal from contaminated groundwater by synthetic resins. Water Res 2008; 42: 260-268. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng ML, Sarma D, Gao YJ, et al. Efficient removal of [UO2]2+, Cs+, and Sr2+ ions by radiation-resistant gallium thioantimonates. J Am Chem Soc 2018; 140: 11133-11140. [Article] [Google Scholar]
- Dickinson M, Scott TB. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 2010; 178: 171-179. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li ZJ, Wang L, Yuan LY, et al. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J Hazard Mater 2015; 290: 26-33. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dmitriev MS, Kolyaskin AD, Krasnokutskiip RA, et al. Dewatering of salt melts of radioactive wastes from NPP by induction heating. At Energy 2014; 117: 40-43. [Article] [Google Scholar]
- Zhang J, Cui J, Eslava S. Oxygen evolution catalysts at transition metal oxide photoanodes: Their differing roles for solar water splitting. Adv Energy Mater 2021; 11: 2003111. [Article] [CrossRef] [Google Scholar]
- Favre-Réguillon A, Lebuzit G, Murat D, et al. Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res 2008; 42: 1160-1166 [CrossRef] [PubMed] [Google Scholar]
- Kaushik A, Marvaniya K, Kulkarni Y, et al. Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. Chem 2022; 8: 2749-2765. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yu Q, Yuan Y, Feng L, et al. Spidroin‐inspired, high‐strength, loofah‐shaped protein fiber for capturing uranium from seawater. Angew Chem Int Ed 2020; 59: 15997-16001. [Article] [Google Scholar]
- Qu Z, Leng R, Wang S, et al. Nanomaterials derived from metal–organic frameworks and their applications for pollutants removal. Rev Environ Contam Toxicol 2024; 262: 1210 [Google Scholar]
- Xu X, Zhang H, Ao J, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energy Environ Sci 2019; 12: 1979-1988. [Article] [CrossRef] [Google Scholar]
- Liu T, Zhang R, Chen M, et al. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Adv Funct Mater 2022; 32: 2111049. [Article] [CrossRef] [Google Scholar]
- Yuan Y, Yang Y, Ma X, et al. Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv Mater 2018; 30: 1706507. [Article] [CrossRef] [Google Scholar]
- Yang L, Xiao H, Qian Y, et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat Sustain 2022; 5: 71-80. [Article] [Google Scholar]
- Yuan Y, Zhao S, Wen J, et al. Rational design of porous nanofiber adsorbent by blow‐spinning with ultrahigh uranium recovery capacity from seawater. Adv Funct Mater 2019; 29: 1805380. [Article] [CrossRef] [Google Scholar]
- Yan B, Ma C, Gao J, et al. An ion‐crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv Mater 2020; 32: 1906615. [Article] [CrossRef] [Google Scholar]
- Xu X, Yue Y, Cai D, et al. Aqueous solution blow spinning of seawater‐stable polyamidoxime nanofibers from water‐soluble precursor for uranium extraction from seawater. Small Methods 2020; 4: 2000558. [Article] [CrossRef] [Google Scholar]
- Shi S, Qian Y, Mei P, et al. Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 2020; 71: 104629. [Article] [CrossRef] [Google Scholar]
- Islas AL, Schober CM. Predicting rogue waves in random oceanic sea states. Phys Fluids 2005; 17: 031701. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Sun Q, Aguila B, Earl LD, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 2018; 30: 1705479. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li D, Liao Y, Chen Z, et al. A 3D hierarchical porous adsorbent constructed by cryo-polymerization for ultrafast uranium harvesting from seawater. J Mater Chem A 2023; 11: 10384-10395. [Article] [Google Scholar]
- Zhang X, Li D, Cui C, et al. Alginate-based supermacroporous hydrogels fabricated by cryo-polymerization for uranium extraction from seawater. Polym Chem 2023; 14: 2902-2915. [Article] [Google Scholar]
- Xu Y, Zhu J, Zhang H, et al. Biomimetic porous cellular foam with space thermal domains for efficient uranium extraction from seawater. J Mater Chem A 2023; 11: 11264-11271. [Article] [Google Scholar]
- Wu Y, Xie Y, Liu X, et al. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coordin Chem Rev 2023; 483: 215097 [CrossRef] [Google Scholar]
- Wang Y, Zhang Y, Li Q, et al. Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater. Carbohydr Polym 2020; 245: 116627. [Article] [Google Scholar]
- Wang Y, Cao M, Peng Q, et al. Polyamidoxime-loaded biochar sphere with high water permeability for fast and effective recovery of uranium from seawater. J Water Process Eng 2023; 55: 104205. [Article] [CrossRef] [Google Scholar]
- Deville S. Wood-like polymeric materials by ice templating. Natl Sci Rev 2018; 6: 184-185 [Google Scholar]
- Zhang X, Yang X, Rong Q, et al. Enrichment and separation of radionuclides by organic polymer materials: A review. Environ Sci Technol 2024; 4: 250-268 [Google Scholar]
- Wang N, Zhao X, Wang J, et al. Accelerated chemical thermodynamics of uranium extraction from seawater by plant‐mimetic transpiration. Adv Sci 2021; 8: 2102250. [Article] [CrossRef] [Google Scholar]
- Ma C, Gao J, Wang D, et al. Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater. Adv Sci 2019; 6: 1900085. [Article] [CrossRef] [Google Scholar]
- Jiao GJ, Ma J, Zhang J, et al. Efficient extraction of uranium from seawater by reticular polyamidoxime-functionalized oriented holocellulose bundles. Carbohydr Polym 2023; 300: 120244. [Article] [Google Scholar]
- Cui WR, Zhang CR, Jiang W, et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat Commun 2020; 11: 436. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen L, Bai Z, Zhu L, et al. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal–organic framework. ACS Appl Mater Interfaces 2017; 9: 32446-32451. [Article] [Google Scholar]
- Pan HB, Liao W, Wai CM, et al. Carbonate–H2O2 leaching for sequestering uranium from seawater. Dalton Trans 2014; 43: 10713-10718. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang R, Qiao Q, Liu T, et al. New insights into hydration shells in boosting marine uranium adsorption kinetics. Chem Eng J 2024; 491: 151995. [Article] [CrossRef] [Google Scholar]
- Prabhat P, Rao A, Kumar P, et al. Supercritical fluid extraction and purification of uranium from crude sodium diuranate. Hydrometallurgy 2016; 164: 177-183. [Article] [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.