Issue
Natl Sci Open
Volume 4, Number 1, 2025
Special Topic: Nuclear Environment Advances
Article Number 20240023
Number of page(s) 13
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20240023
Published online 19 September 2024
  • Gao X, Hu QH, Shi YZ, et al. Rationally designing imidazole-based coordination polymers with high adsorption capacity for removing iodine. Chem Eng J 2023; 468: 143838. [Article] [CrossRef] [Google Scholar]
  • Ye S, Ren T, Liao J, et al. Solid-phase fluorescence filter effect: Toward field and ultrasensitive detection of iodine speciation in seawater. Environ Sci Technol Lett 2023; 10: 604-610. [Article] [Google Scholar]
  • Shi YZ, Hu QH, Gao X, et al. A flexible indium-based metal-organic framework with ultrahigh adsorption capacity for iodine removal from seawater. Separation Purification Tech 2023; 312: 123366. [Article] [Google Scholar]
  • Guo X, Li Y, Zhang M, et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption. Angew Chem Int Ed 2020; 59: 22697-22705. [Article] [Google Scholar]
  • Huang M, Yang L, Li X, et al. An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation–π and electrostatic forces. Chem Commun 2020; 56: 1401-1404. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xie Y, Rong Q, Mao F, et al. Engineering the pore environment of antiparallel stacked covalent organic frameworks for capture of iodine pollutants. Nat Commun 2024; 15: 2671-2681. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Guo Q, Li J, Zhao Y, et al. Record high iodate anion capture by a redox-active cationic polymer network. Angew Chem Int Ed 2024; 63: e202400849. [Article] [CrossRef] [Google Scholar]
  • Burns PC, Ewing RC, Navrotsky A. Nuclear fuel in a reactor accident. Science 2012; 335: 1184-1188. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yuan Y, Yu Q, Cao M, et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat Sustain 2021; 4: 708-714. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Côté AP, Benin AI, Ockwig NW, et al. Porous, crystalline, covalent organic frameworks. Science 2005; 310: 1166-1170. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ying Y, Tong M, Ning S, et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J Am Chem Soc 2020; 142: 4472-4480. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Gao Q, Li X, Ning GH, et al. Covalent organic framework with frustrated bonding network for enhanced carbon dioxide storage. Chem Mater 2018; 30: 1762-1768. [Article] [CrossRef] [Google Scholar]
  • Park JH, Kwak MJ, Hwang C, et al. Self‐assembling films of covalent organic frameworks enable long‐term, efficient cycling of zinc‐ion batteries. Adv Mater 2021; 33: 2101726. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mosleh I, Khosropour AR, Aljewari H, et al. Cationic covalent organic framework as an ion exchange material for efficient adsorptive separation of biomolecules. ACS Appl Mater Interfaces 2021; 13: 35019-35025. [Article] [Google Scholar]
  • Ma HC, Zhao CC, Chen GJ, et al. Photothermal conversion triggered thermal asymmetric catalysis within metal nanoparticles loaded homochiral covalent organic framework. Nat Commun 2019; 10: 3368. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Han X, Xia Q, Huang J, et al. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J Am Chem Soc 2017; 139: 8693-8697. [Article] [Google Scholar]
  • Xiong XH, Yu ZW, Gong LL, et al. Ammoniating covalent organic framework (COF) for high‐performance and selective extraction of toxic and radioactive uranium ions. Adv Sci 2019; 6: 1900547. [Article] [CrossRef] [Google Scholar]
  • Wang D, Song J, Wen J, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv Energy Mater 2018; 8: 1802607. [Article] [CrossRef] [Google Scholar]
  • Rager S, Jakowetz AC, Gole B, et al. Scaffold-induced diketopyrrolopyrrole molecular stacks in a covalent organic framework. Chem Mater 2019; 31: 2707-2712. [Article] [Google Scholar]
  • Xie Y, Pan T, Lei Q, et al. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nat Commun 2022; 13: 2878. [Article] [Google Scholar]
  • Guo X, Tian Y, Zhang M, et al. Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks. Chem Mater 2018; 30: 2299-2308. [Article] [Google Scholar]
  • He L, Chen L, Dong X, et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 2021; 7: 699-714. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lin Y, Jiang X, Kim ST, et al. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 2017; 139: 7172-7175. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu L, Song C, Kong A. Nitrogen and sulfur-enriched porous bithiophene-melamine covalent organic polymers for effective capture of CO2 and iodine. Mater Lett 2020; 277: 128291. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Pan J, Jia S, Li G, et al. Organic building block based microporous network SNW-1 coating fabricated by multilayer interbridging strategy for efficient enrichment of trace volatiles. Anal Chem 2015; 87: 3373-3381. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Schwab MG, Fassbender B, Spiess HW, et al. Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J Am Chem Soc 2009; 131: 7216-7217. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Bhadra M, Kandambeth S, Sahoo MK, et al. Triazine functionalized porous covalent organic framework for photo-organocatalytic E – Z isomerization of olefins. J Am Chem Soc 2019; 141: 6152-6156. [Article] [Google Scholar]
  • Subrahmanyam KS, Sarma D, Malliakas CD, et al. Chalcogenide aerogels as sorbents for radioactive iodine. Chem Mater 2015; 27: 2619-2626. [Article] [CrossRef] [Google Scholar]
  • Wei PF, Qi MZ, Wang ZP, et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J Am Chem Soc 2018; 140: 4623-4631. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Grunenberg L, Savasci G, Terban MW, et al. Amine-linked covalent organic frameworks as a platform for postsynthetic structure interconversion and pore-wall modification. J Am Chem Soc 2021; 143: 3430-3438. [Article] [Google Scholar]
  • Zhang M, Li Y, Yuan W, et al. Construction of flexible amine‐linked covalent organic frameworks by catalysis and reduction of formic acid via the Eschweiler-Clarke reaction. Angew Chem Int Ed 2021; 60: 12396-12405. [Article] [Google Scholar]
  • Yang Z, Liu J, Li Y, et al. Arylamine-linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew Chem Int Ed 2021; 60: 20754-20759. [Article] [Google Scholar]
  • Meng JC, Siuzdak G, Finn MG. Affinity mass spectrometry from a tailored porous silicon surface. Chem Commun 20042108-2109 [CrossRef] [PubMed] [Google Scholar]
  • Troschke E, Grätz S, Lübken T, et al. Mechanochemical Friedel–Crafts alkylation—A sustainable pathway towards porous organic polymers. Angew Chem Int Ed 2017; 56: 6859-6863. [Article] [Google Scholar]
  • Yan X, Yang Y, Li G, et al. Thiophene-based covalent organic frameworks for highly efficient iodine capture. Chin Chem Lett 2023; 34: 107201. [Article] [CrossRef] [Google Scholar]
  • de Faria DLA, Gil HAC, de Queiróz AAA. The interaction between polyvinylpyrrolidone and I2 as probed by Raman spectroscopy. J Mol Structure 1999; 478: 93-98. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xu M, He Q, Chen F, et al. Thermal-responsive conjugated micropore polymers for smart capture of volatile iodine. ACS Appl Mater Interfaces 2023; 15: 31421-31429. [Article] [Google Scholar]
  • Xie Y, Pan T, Lei Q, et al. Ionic functionalization of multivariate covalent organic frameworks to achieve an exceptionally high iodine‐capture capacity. Angew Chem Int Ed 2021; 60: 22432-22440. [Article] [Google Scholar]
  • Chen D, Ma T, Zhao X, et al. Multi-functionalization integration into the electrospun nanofibers exhibiting effective iodine capture from water. ACS Appl Mater Interfaces 2022; 14: 47126-47135. [Article] [Google Scholar]
  • Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 2011; 33: 580-592. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.