Issue
Natl Sci Open
Volume 4, Number 1, 2025
Special Topic: Nuclear Environment Advances
Article Number 20240024
Number of page(s) 37
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20240024
Published online 19 September 2024
  • Ikemoto I. Nuclear power as an energy source. Energy Resources 1999; 20: 367–368 [Google Scholar]
  • Skinner LB, Benmore CJ, Weber JKR, et al. Molten uranium dioxide structure and dynamics. Science 2014; 346: 984-987. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang D, Song J, Lin S, et al. A marine‐inspired hybrid sponge for highly efficient uranium extraction from seawater. Adv Funct Mater 2019; 29: 1901009. [Article] [CrossRef] [Google Scholar]
  • Bourrachot S, Brion F, Pereira S, et al. Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio). Aquat Toxicol 2014; 154: 1-11. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chen Y, Yin X, Zheng N, et al. Flexible self-supporting Na3MnTi(PO4)3@C fibers for uranium extraction from seawater by electro sorption. J Hazard Mater 2024; 461: 132664. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang D, Xu Y, Xiao D, et al. Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. J Hazard Mater 2019; 371: 83-93. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Mei B, Tian X, et al. Remediation of uranium(VI)-containing wastewater based on a novel graphene oxide/hydroxyapatite membrane. J Membr Sci 2023; 675: 121543. [Article] [Google Scholar]
  • Zhou L, Li Y, Shao Y, et al. Interface coupling induced built-in electric fields accelerate electro-assisted uranium extraction over Co3O4@FeOx nanosheet arrays. Appl Catal B-Environ Energy 2024; 353: 124052. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Satpathy A, Catalano JG, Giammar DE. Reduction of U(VI) on chemically reduced montmorillonite and surface complexation modeling of adsorbed U(IV). Environ Sci Technol 2022; 56: 4111-4120. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Dong Z, Gao D, Li Z, et al. Harvesting the vibration energy of CdS for high‐efficient piezo‐photocatalysis removal of U(VI): Roles of shape dependent and piezoelectric polarization. Energy Environ Mater 2024; 7: e12705. [Article] [CrossRef] [Google Scholar]
  • Dong Z, Zhang Z, Wang T, et al. Ingenious design of ternary hollow nanosphere with shell hierarchical tandem heterojunctions toward optimized visible-light photocatalytic reduction of U(VI). Sep Purif Technol 2022; 286: 120418. [Article] [CrossRef] [Google Scholar]
  • Amadelli R, Maldotti A, Sostero S, et al. Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions. Faraday Trans 1991; 87: 3267-3273. [Article] [CrossRef] [Google Scholar]
  • Meng Q, Wu L, Yang X, et al. Photo-enhanced uranium recovery from spent fuel reprocessing wastewater via S-scheme 2D/0D C3N5/Fe2O3 heterojunctions. SusMat 2024; 4: e199. [Article] [CrossRef] [Google Scholar]
  • Yu K, Li Y, Cao X, et al. In-situ constructing amidoxime groups on metal-free g-C3N4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(VI) extraction. J Hazard Mater 2023; 460: 132356. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yang G, Wei L, Wang X, et al. Enhancing commercially iron powder electron transport by surface biosulfuration to achieve uranium extraction from uranium ore wastewater. Inorg Chem 2024; 63: 1378-1387. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu Z, Yao S, Zhang A, et al. Intramolecular built-in electric field enhanced polymerized nitrogen-carbon homojunction π*-electron delocalization enrichment promotes photocatalytic uranium (VI) reduction. Appl Catal B-Environ 2023; 338: 123023. [Article] [Google Scholar]
  • Zhang W, Li L, Gao Y, et al. Graphitic carbon nitride-based materials for photocatalytic reduction of U(VI). New J Chem 2020; 44: 19961-19976. [Article] [CrossRef] [Google Scholar]
  • Yu F, Yu S, Li C, et al. Molecular engineering of biomimetic donor-acceptor conjugated microporous polymers with full-spectrum response and an unusual electronic shuttle for enhanced uranium(VI) photoreduction. Chem Eng J 2023; 466: 143285. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhong X, Ling Q, Ren Z, et al. Immobilization of U(VI) onto covalent organic frameworks with the different periodic structure by photocatalytic reduction. Appl Catal B-Environ 2023; 326: 122398. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Feng L, Yuan Y, Yan B, et al. Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI). Nat Commun 2022; 13: 1389. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chen W, Cai Y, Lv Z, et al. Improvement of U(VI) removal by tuning magnetic metal organic frameworks with amine ligands. J Mol Liq 2021; 334: 116495. [Article] [CrossRef] [Google Scholar]
  • Wu P, Yin X, Zhao Y, et al. Porphyrin-based hydrogen-bonded organic framework for visible light driven photocatalytic removal of U(VI) from real low-level radioactive wastewater. J Hazard Mater 2023; 459: 132179. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sprick RS, Jiang JX, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc 2015; 137: 3265-3270. [Article] [Google Scholar]
  • Yang C, Ma BC, Zhang L, et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed 2016; 55: 9202-9206. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yu F, Zhu Z, Wang S, et al. Tunable perylene-based donor-acceptor conjugated microporous polymer to significantly enhance photocatalytic uranium extraction from seawater. Chem Eng J 2021; 412: 127558. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang Y, Chen G, Weng H, et al. Carbon-doped boron nitride nanosheets with adjustable band structure for efficient photocatalytic U(VI) reduction under visible light. Chem Eng J 2021; 410: 128280. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang J, Li P, Wang Y, et al. New strategy for the persistent photocatalytic reduction of U(VI): Utilization and storage of solar energy in K+ and cyano co‐decorated poly(heptazine imide). Adv Sci 2023; 10: e2205542. [Article] [CrossRef] [Google Scholar]
  • Ren W, Cheng J, Ou H, et al. Enhancing visible‐light hydrogen evolution performance of crystalline carbon nitride by defect engineering. ChemSusChem 2019; 12: 3257-3262. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Dai Z, Zhao S, Lian J, et al. Efficient visible-light-driven photoreduction of U(VI) by carbon dots modified porous g-C3N4. Sep Purif Technol 2022; 298: 121590. [Article] [Google Scholar]
  • Kim H, Kwon OS, Kim S, et al. Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. Energy Environ Sci 2016; 9: 1063-1073. [Article] [Google Scholar]
  • Chen X, Zhang W, Zhang L, et al. Sacrificial agent-free photocatalytic H2O2 evolution via two-electron oxygen reduction using a ternary α-Fe2O3/CQD@g-C3N4 photocatalyst with broad-spectrum response. J Mater Chem A 2020; 8: 18816-18825. [Article] [Google Scholar]
  • Dong Z, Meng C, Li Z, et al. Novel Co3O4@TiO2@CdS@Au double-shelled nanocage for high-efficient photocatalysis removal of U(VI): Roles of spatial charges separation and photothermal effect. J Hazard Mater 2023; 452: 131248. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Tu B, Yu K, Fu D, et al. Amino-rich Ag-NWs/NH2-MIL-125(Ti) hybrid heterostructure via LSPR effect for photo-assist uranium extraction from fluorine-containing uranium wastewater without sacrificial agents. Appl Catal B-Environ 2023; 337: 122965. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kang J, Hang J, Chen B, et al. Amide linkages in pyrene-based covalent organic frameworks toward efficient photocatalytic reduction of uranyl. ACS Appl Mater Interfaces 2022; 14: 57225-57234. [Article] [Google Scholar]
  • Xu RH, Cui WR, Zhang CR, et al. Vinylene-linked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms. Chem Eng J 2021; 419: 129550. [Article] [Google Scholar]
  • Liu X, Bi RX, Zhang CR, et al. SnS2-covalent organic framework Z-scheme van der Waals heterojunction for enhanced photocatalytic reduction of uranium (VI) in rare earth tailings wastewater. Chem Eng J 2023; 460: 141756. [Article] [CrossRef] [Google Scholar]
  • Fu J, Zhu B, Jiang C, et al. Hierarchical porous O‐doped g‐C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017; 13: 1603938. [Article] [CrossRef] [Google Scholar]
  • Zhang G, Ou W, Wang J, et al. Stable, carrier separation tailorable conjugated microporous polymers as a platform for highly efficient photocatalytic H2 evolution. Appl Catal B-Environ 2019; 245: 114-121. [Article] [Google Scholar]
  • Sheng J, Dong H, Meng X, et al. Effect of different functional groups on photocatalytic hydrogen evolution in covalent‐organic frameworks. ChemCatChem 2019; 11: 2313-2319. [Article] [CrossRef] [Google Scholar]
  • Chen J, Dong CL, Zhao D, et al. Molecular design of polymer heterojunctions for efficient solar–hydrogen conversion. Adv Mater 2017; 29: 1606198. [Article] [CrossRef] [Google Scholar]
  • Zhang Q, Kelly MA, Bauer N, et al. The curious case of fluorination of conjugated polymers for solar cells. Acc Chem Res 2017; 50: 2401-2409. [Article] [Google Scholar]
  • Zhong W, Liang J, Hu S, et al. Effect of monofluoro substitution on the optoelectronic properties of benzo[c][1,2,5]thiadiazole based organic semiconductors. Macromolecules 2016; 49: 5806-5816. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xiang Y, Wang X, Rao L, et al. Conjugated polymers with sequential fluorination for enhanced photocatalytic H2 evolution via proton-coupled electron transfer. ACS Energy Lett 2018; 3: 2544-2549. [Article] [Google Scholar]
  • Cheng Z, Fang W, Zhao T, et al. Efficient visible-light-driven photocatalytic hydrogen evolution on phosphorus-doped covalent triazine-based frameworks. ACS Appl Mater Interfaces 2018; 10: 41415-41421. [Article] [Google Scholar]
  • Vyas VS, Haase F, Stegbauer L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 2015; 6: 8508. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Pachfule P, Acharjya A, Roeser J, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J Am Chem Soc 2018; 140: 1423-1427. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Jin E, Lan Z, Jiang Q, et al. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem 2019; 5: 1632-1647. [Article] [Google Scholar]
  • He S, Yang Z, Cui X, et al. Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorption-photocatalysis for the removal of uranium (VI). Chemosphere 2020; 260: 127548. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li S, Yang P, Liu X, et al. Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. J Mater Chem A 2019; 7: 16902-16911. [Article] [Google Scholar]
  • Liu C, Dong Z, Yu C, et al. Study on photocatalytic performance of hexagonal SnS2/g-C3N4 nanosheets and its application to reduce U (VI) in sunlight. Appl Surf Sci 2021; 537: 147754. [Article] [Google Scholar]
  • Zhong X, Liu Y, Wang S, et al. In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U(VI) photocatalytic reduction. Sep Purif Technol 2021; 279: 119627. [Article] [Google Scholar]
  • Li P, Wang J, Wang Y, et al. Ultrafast recovery of aqueous uranium: Photocatalytic U(VI) reduction over CdS/g-C3N4. Chem Eng J 2021; 425: 131552. [Article] [CrossRef] [Google Scholar]
  • Meng Q, Yang X, Wu L, et al. Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. J Hazard Mater 2022; 422: 126912. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, Liu C, Dong Z, et al. Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI). Appl Surf Sci 2020; 520: 146352. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang Z, Zhou R, Dong Z, et al. Visible-light induced photocatalytic removal of U(VI) from aqueous solution by MoS2/g-C3N4 nanocomposites. J Radioanal Nucl Chem 2021; 328: 9-17. [Article] [Google Scholar]
  • Wang T, Zhang ZB, Dong Z, et al. A facile synthesis of g-C3N4/WS2 heterojunctions with enhanced photocatalytic reduction activity of U(VI). J Radioanal Nucl Chem 2022; 331: 577-586. [Article] [Google Scholar]
  • Li Z, Zhang Z, Dong Z, et al. Synthesis of MoS2/P-g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of uranium (VI). J Solid State Chem 2021; 302: 122305. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li S, Yang X, Cui Z, et al. Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites. Appl Catal B-Environ 2021; 298: 120625. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li S, Wang Y, Wang J, et al. Modifying g-C3N4 with oxidized Ti3C2 MXene for boosting photocatalytic U(VI) reduction performance. J Mol Liq 2022; 346: 117937. [Article] [Google Scholar]
  • Huang X, Xiao J, Mei P, et al. The synthesis of Z-scheme MoS2/g-C3N4 heterojunction for enhanced visible-light-driven photoreduction of uranium. Catal Lett 2022; 152: 1981–1989 [Google Scholar]
  • Chen T, Li M, Zhou L, et al. Harmonizing the energy band between adsorbent and semiconductor enables efficient uranium extraction. Chem Eng J 2021; 420: 127645. [Article] [Google Scholar]
  • Liu S, Wang Z, Lu Y, et al. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Appl Catal B-Environ 2021; 282: 119523. [Article] [Google Scholar]
  • Gao H, Xu J, Zhou J, et al. Metal organic framework derived heteroatoms and cyano (–C≡N) group co-decorated porous g-C3N4 nanosheets for improved photocatalytic H2 evolution and uranium(VI) reduction. J Colloid Interface Sci 2020; 570: 125-134. [Article] [Google Scholar]
  • Li P, Wang Y, Wang J, et al. Carboxyl groups on g-C3N4 for boosting the photocatalytic U(VI) reduction in the presence of carbonates. Chem Eng J 2021; 414: 128810. [Article] [Google Scholar]
  • Feng J, Yang Z, He S, et al. Photocatalytic reduction of uranium(VI) under visible light with Sn-doped In2S3 microspheres. Chemosphere 2018; 212: 114-123. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, Li Z, Dong Z, et al. Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction. Chin Chem Lett 2022; 33: 3577-3580. [Article] [CrossRef] [Google Scholar]
  • Gu S, Wu S, Cao L, et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J Am Chem Soc 2019; 141: 9623-9628. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Xu H, Tao S, Jiang D. Proton conduction in crystalline and porous covalent organic frameworks. Nat Mater 2016; 15: 722-726. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine‐based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 2008; 47: 3450–3453 [Google Scholar]
  • Wang K, Yang L, Wang X, et al. Covalent triazine frameworks via a low‐temperature polycondensation approach. Angew Chem Int Ed 2017; 56: 14149-14153. [Article] [Google Scholar]
  • Guan X, Li H, Ma Y, et al. Chemically stable polyarylether-based covalent organic frameworks. Nat Chem 2019; 11: 587-594. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liang R, Luo J, Lin S, et al. Boosting the photoreduction uranium activity for donor–acceptor–acceptor type conjugated microporous polymers by statistical copolymerization. Sep Purif Technol 2023; 312: 123291. [Article] [Google Scholar]
  • Xu Y, Liu Q, Zhu J, et al. Self-assembled porous polydopamine microspheres modified polyacrylonitrile fiber for synergistically enhanced U(VI) extraction and seawater desalination. Sep Purif Technol 2023; 306: 122684. [Article] [Google Scholar]
  • Cui WR, Zhang CR, Liang RP, et al. Covalent organic framework sponges for efficient solar desalination and selective uranium recovery. ACS Appl Mater Interfaces 2021; 13: 31561-31568. [Article] [Google Scholar]
  • Li H, He N, Cheng C, et al. Antimicrobial polymer contained adsorbent: A promising candidate with remarkable anti-biofouling ability and durability for enhanced uranium extraction from seawater. Chem Eng J 2020; 388: 124273. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang CR, Cui WR, Niu CP, et al. rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination. Chem Eng J 2022; 428: 131178. [Article] [CrossRef] [Google Scholar]
  • Zhang F, Dong H, Li Y, et al. In situ metal‐oxygen‐hydrogen modified B-TiO2@Co2P-X S-scheme heterojunction effectively enhanced charge separation for photo‐assisted uranium reduction. Adv Sci 2024; 11: 2305439. [Article] [Google Scholar]
  • Li Z, Zhang Z, Dong Z, et al. Solar light-responsive CdS/UiO-66-NH2 for ultrafast uranium reduction from uranium-containing mine wastewater without external sacrificial agents. Sep Purif Technol 2022; 283: 120195. [Article] [Google Scholar]
  • Dong Z, Hu S, Li Z, et al. Biomimetic photocatalytic system designed by spatially separated cocatalysts on Z-scheme heterojunction with identified charge‐transfer processes for boosting removal of U(VI). Small 2023; 19: e2300003. [Article] [CrossRef] [Google Scholar]
  • Segura JL, Royuela S, Mar Ramos M. Post-synthetic modification of covalent organic frameworks. Chem Soc Rev 2019; 48: 3903-3945. [Article] [Google Scholar]
  • Albacete P, Martínez JI, Li X, et al. Layer-stacking-driven fluorescence in a two-dimensional imine-linked covalent organic framework. J Am Chem Soc 2018; 140: 12922-12929. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Miao Z, Liu G, Cui Y, et al. A novel strategy for the construction of covalent organic frameworks from nonporous covalent organic polymers. Angew Chem Int Ed 2019; 131: 4960-4964. [Article] [Google Scholar]
  • Wang J, Wang Y, Wang W, et al. Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI). Chem Eng J 2020; 383: 123193. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jiang P, Yu K, Yuan H, et al. Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. J Mater Chem A 2021; 9: 9809-9814. [Article] [Google Scholar]
  • Ye Y, Jin J, Chen F, et al. Removal and recovery of aqueous U(VI) by heterogeneous photocatalysis: Progress and challenges. Chem Eng J 2022; 450: 138317. [Article] [Google Scholar]
  • Chen T, Yu K, Dong C, et al. Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coord Chem Rev 2022; 467: 214615. [Article] [CrossRef] [Google Scholar]
  • Zhu W, Li X, Wang D, et al. Advanced photocatalytic uranium extraction strategies: Progress, challenges, and prospects. Nanomaterials 2023; 13: 2005. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lu C, Chen R, Wu X, et al. Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl Surf Sci 2016; 360: 1016-1022. [Article] [Google Scholar]
  • Wen C, Yao Y, Meng L, et al. Photocatalytic and electrocatalytic extraction of uranium by COFs: A review. Ind Eng Chem Res 2023; 62: 18230-18250. [Article] [Google Scholar]
  • Hong J, Ma R, Wu Y, et al. Experimental and theoretical identifications of durable Fe–Nx configurations embedded in graphitic carbon nitride for uranium photoreduction. J Environ Chem Eng 2022; 10: 108374. [Article] [Google Scholar]
  • Wu X, Jiang S, Song S, et al. Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+. Appl Surf Sci 2018; 430: 371-379. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lu C, Zhang P, Jiang S, et al. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal B-Environ 2017; 200: 378-385. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li P, Wang J, Wang Y, et al. An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI). J PhotoChem PhotoBiol C-PhotoChem Rev 2019; 41: 100320. [Article] [CrossRef] [Google Scholar]
  • Jiang XH, Xing QJ, Luo XB, et al. Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B-Environ 2018; 228: 29-38. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • He F, Xiao Q, Chen Y, et al. Synergistic reduction of U(VI) and selective oxidation of benzyl alcohol to prepare benzaldehyde via WOx/g-C3N4. Appl Catal B-Environ 2024; 343: 123525. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wu F, Zhang Z, Cheng Z, et al. The enhanced photocatalytic reduction of uranium(VI) by ZnS@g-C3N4 heterojunctions under sunlight. J Radioanal Nucl Chem 2021; 329: 1125-1133. [Article] [Google Scholar]
  • Hu E, Chen Q, Gao Q, et al. Cyano‐functionalized graphitic carbon nitride with adsorption and photoreduction isosite achieving efficient uranium extraction from seawater. Adv Funct Mater 2024; 34: 2312215 [CrossRef] [Google Scholar]
  • Li Z, Zhang Z, Zhu X, et al. Exciton dissociation and transfer behavior and surface reaction mechanism in donor–acceptor organic semiconductor photocatalytic separation of uranium. Appl Catal B-Environ 2023; 332: 122751. [Article] [Google Scholar]
  • Gong J, Xie Z, Xiong C, et al. Efficient photocatalytic removal of U(VI) over π-electron-incorporated g-C3N4 under visible light irradiation. J Radioanal Nucl Chem 2019; 322: 1115-1125. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Gong J, Xie Z, Wang B, et al. Fabrication of g-C3N4-based conjugated copolymers for efficient photocatalytic reduction of U(VI). J Environ Chem Eng 2021; 9: 104638. [Article] [Google Scholar]
  • Dai Z, Sun Y, Zhang H, et al. Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 nanocomposite under visible LED light irradiation. Chemosphere 2020; 254: 126671. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Molina A, Patil N, Ventosa E, et al. Electrode engineering of redox-active conjugated microporous polymers for ultra-high areal capacity organic batteries. ACS Energy Lett 2020; 5: 2945-2953. [Article] [Google Scholar]
  • Wang H, Li Q, Wu Q, et al. Conjugated microporous polymers with bipolar and double redox‐active centers for high‐performance dual‐ion, organic symmetric battery. Adv Energy Mater 2021; 11: 2100381. [Article] [CrossRef] [Google Scholar]
  • Yang X, Duan L, Ran X, et al. Conjugated microporous polymer bearing 1,3,4-oxadiazole and thienyl moieties for decomposition of organic dyes under visible light. React Funct Polym 2021; 168: 105051. [Article] [Google Scholar]
  • Zhi Y, Ma S, Xia H, et al. Construction of donor-acceptor type conjugated microporous polymers: A fascinating strategy for the development of efficient heterogeneous photocatalysts in organic synthesis. Appl Catal B-Environ 2019; 244: 36-44. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang Z, Yang X, Yang T, et al. Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production. ACS Catal 2018; 8: 8590-8596. [Article] [Google Scholar]
  • Chen L, Chen B, Kang J, et al. The synthesis of a novel conjugated microporous polymer and application on photocatalytic removal of uranium(Ⅵ) from wastewater under visible light. Chem Eng J 2022; 431: 133222. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen B, Zhang G, Chen L, et al. Visible light driven photocatalytic removal of uranium(VI) in strongly acidic solution. J Hazard Mater 2022; 426: 127851. [Article] [Google Scholar]
  • Yu F, Zhu Z, Li C, et al. A redox-active perylene-anthraquinone donor-acceptor conjugated microporous polymer with an unusual electron delocalization channel for photocatalytic reduction of uranium(VI) in strongly acidic solution. Appl Catal B-Environ 2022; 314: 121467. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang W, Wang B, Cui H, et al. Unveiling the exciton dissociation dynamics steered by built-in electric fields in conjugated microporous polymers for photoreduction of uranium (VI) from seawater. J Colloid Interface Sci 2024; 662: 377-390. [Article] [Google Scholar]
  • Yu F, Zhu Z, Wang S, et al. Novel donor-acceptor-acceptor ternary conjugated microporous polymers with boosting forward charge separation and suppressing backward charge recombination for photocatalytic reduction of uranium (VI). Appl Catal B-Environ 2022; 301: 120819. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen YR, Wang X, Fan XY, et al. Facilitating charge separation and migration of conjugated microporous polymers via skeleton isomerism engineering for photocatalytic reduction of uranium (VI). Sep Purif Technol 2024; 334: 126121. [Article] [Google Scholar]
  • Zhong X, Ren Z, Ling Q, et al. Adsorption-photocatalysis processes: The performance and mechanism of a bifunctional covalent organic framework for removing uranium ions from water. Appl Surf Sci 2022; 597: 153621. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Song Y, Li A, Li P, et al. Unassisted uranyl photoreduction and separation in a donor–acceptor covalent organic framework. Sep Purif Technol 2022; 34: 2771–2778 [Google Scholar]
  • Zhao Y, Li S, Fu G, et al. Construction of layer-blocked covalent organic framework heterogenous films via surface-initiated polycondensations with strongly enhanced photocatalytic properties. ACS Cent Sci 2024; 10: 775–781 [Google Scholar]
  • Cui W-R, Zhang C-R, Xu R-H, et al. High-efficiency photo-enhanced extraction of uranium from natural seawater by olefin-linked covalent organic frameworks. ACS ES T Water 2020; 1: 440–448 [Google Scholar]
  • Cui W, Zhang C, Xu R, et al. Low band gap benzoxazole‐linked covalent organic frameworks for photo‐enhanced targeted uranium recovery. Small 2021; 17: e2006882. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wu Y, Li P, Chen L, et al. Reversible amine-to-imine chemistry at a covalent organic framework for sustainable uranium redox separation. ACS Sustain Chem Eng 2024; 12: 6659-6665. [Article] [Google Scholar]
  • Zhong X, Ling Q, Kuang P, et al. Modified side-chain COFs construct built-in electric fields with low exciton binding energy for photo-reduced uranium. Chem Eng J 2024; 483: 149339. [Article] [Google Scholar]
  • Zhang S, Chen L, Qu Z, et al. Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. Chem 2023; 9: 3172-3184. [Article] [Google Scholar]
  • Chen L, Hang J, Chen B, et al. Photocatalytic uranium removal from basic effluent by porphyrin-Ni COF as the photocatalyst. Chem Eng J 2023; 454: 140378. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu JL, Lin MX, Huang J, et al. sp2-c linked Cu-based metal-covalent organic framework for chemical and photocatalysis synergistic reduction of uranium. Chem Eng J 2024; 491: 151982. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cui WR, Li FF, Xu RH, et al. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater. Angew Chem Int Ed 2020; 132: 17837-17843. [Article] [Google Scholar]
  • Hao M, Chen Z, Liu X, et al. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chem 2022; 4: 2294-2307. [Article] [CrossRef] [Google Scholar]
  • Yu Q, Yuan Y, Wen J, et al. A universally applicable strategy for construction of anti‐biofouling adsorbents for enhanced uranium recovery from seawater. Adv Sci 2019; 6: 1900002. [Article] [CrossRef] [Google Scholar]
  • Hao M, Xie Y, Liu X, et al. Modulating uranium extraction performance of multivariate covalent organic frameworks through donor–acceptor linkers and amidoxime nanotraps. JACS Au 2023; 3: 239-251. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang HL, Liu W, Li A, et al. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew Chem Int Ed 2019; 58: 16110–16114 [Google Scholar]
  • Chen M, Liu T, Tang S, et al. Mixed-linker strategy toward enhanced photoreduction-assisted uranium recovery from wastewater and seawater. Chem Eng J 2022; 446: 137264. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li H, Zhai F, Gui D, et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl Catal B-Environ 2019; 254: 47-54. [Article] [Google Scholar]
  • Zhao J, Lyu C, Zhang R, et al. Self-cleaning and regenerable nano zero-valent iron modified PCN-224 heterojunction for photo-enhanced radioactive waste reduction. J Hazard Mater 2023; 442: 130018. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chen M, Liu T, Zhang X, et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv Funct Mater 2021; 31: 2100106. [Article] [CrossRef] [Google Scholar]
  • Zhong X, Liu Y, Zeng W, et al. Excellent photoreduction performance of U(VI) on metal organic framework/covalent organic framework heterojunction by solar-driven. Sep Purif Technol 2022; 285: 120405. [Article] [CrossRef] [Google Scholar]
  • Bi RX, Liu X, Lei L, et al. Core-shell MOF@COF photocatalysts for synergistic enhanced U(VI) and tetracycline cleanup through space and carrier separation. Chem Eng J 2024; 485: 150026. [Article] [CrossRef] [Google Scholar]
  • Yang Y, Guo K, Zhu M, et al. Exploring electron transfer mechanism in synergistic interactional reduced polyoxometalate-based Cu(I)–organic framework for photocatalytic removal of U(VI). Inorg Chem 2024; 63: 7876-7885. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu T, Tang S, Wei T, et al. Defect-engineered metal-organic framework with enhanced photoreduction activity toward uranium extraction from seawater. Cell Rep Phys Sci 2022; 3: 100892. [Article] [Google Scholar]
  • Gao Z, Wang Y, Lin Y, et al. Constructing dual-functional porphyrin-based thorium metal-organic framework toward photocatalytic uranium(VI) reduction integrated with organic oxidation. Sci China Chem 2022; 65: 1544-1551. [Article] [CrossRef] [Google Scholar]
  • Yu Z, Ye D, Zhao J, et al. Photocatalytic anti-biofouling coatings with dynamic surfaces of hybrid metal-organic framework nanofibrous mats for uranium (VI) separation from seawater. Chem Eng J 2021; 420: 129691. [Article] [Google Scholar]
  • Salomone VN, Meichtry JM, Zampieri G, et al. New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. Chem Eng J 2015; 261: 27-35. [Article] [Google Scholar]
  • Pan Z, Bártová B, LaGrange T, et al. Nanoscale mechanism of UO2 formation through uranium reduction by magnetite. Nat Commun 2020; 11: 4001. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang Z, Liu H, Lei Z, et al. Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chem Eng J 2020; 402: 126256. [Article] [Google Scholar]
  • Dong Z, Zhang Z, Li Z, et al. Double-shelled hollow nanosphere assembled by TiO2@surface sulfate functionalized CdS for boosting photocatalysis reduction of U(VI) under seawater conditions. Chem Eng J 2022; 431: 133256. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Pei H, Dong Z, Li Z, et al. Synergistic effect of homojunction and Ohmic junctions in CdS boosting spatial charge separation for U(VI) photoreduction. Nano Res 2024; 17: 6849-6859. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gong X, Tang L, Wang R, et al. Achieving efficient photocatalytic uranium extraction within a record short period of 3 min by up-conversion erbium doped ZnO nanosheets. Chem Eng J 2022; 450: 138044. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.