Issue |
Natl Sci Open
Volume 4, Number 2, 2025
Special Topic: Flexible Electronics and Micro/Nanomanufacturing
|
|
---|---|---|
Article Number | 20240046 | |
Number of page(s) | 28 | |
Section | Engineering | |
DOI | https://doi.org/10.1360/nso/20240046 | |
Published online | 18 December 2024 |
- Barth FG, Höller A. Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Phil Trans R Soc Lond B 1999; 354: 183-192. [Article] [Google Scholar]
- Bleckmann H, Zelick R. Lateral line system of fish. Integr Zool 2009; 4: 13-25. [Article] [Google Scholar]
- Grinnell AD, Griffin DR. The sensitivity of echolocation in bats. Biol Bull 1958; 114: 10-22. [Article] [Google Scholar]
- Ghosh S, Sood AK, Kumar N. Carbon nanotube flow sensors. Science 2003; 299: 1042-1044. [Article] [Google Scholar]
- Allen MG. Diode laser absorption sensors for gas-dynamic and combustion flows. Meas Sci Technol 1998; 9: 545-562. [Article] [NASA ADS] [PubMed] [Google Scholar]
- Hiraki K, Hinada M, Higuchi H, et al. Flow measurement around rigid parachute-like bodies in supersonic free stream. In: Proceedings of the 14th Aerodynamic Decelerator Systems Technology Conference. San Francisco: American Institute of Aeronautics and Astronautics, 1997 [Google Scholar]
- Kersjes R, Mokwa W. A fast liquid flow sensor with thermal isolation by oxide-filled trenches. Sens Actuat A-Phys 1995; 47: 373-379. [Article] [Google Scholar]
- Shikida M, Yoshikawa K, Matsuyama T, et al. Catheter flow sensor with temperature compensation for tracheal intubation tube system. Sens Actuat A-Phys 2014; 215: 155-160. [Article] [Google Scholar]
- Kolin A. A new principle for electromagnetic catheter flow meters. Proc Natl Acad Sci USA 1969; 63: 357-363. [Article] [Google Scholar]
- Ding G, Ma B, Deng J, et al. Temperature drifts of the floating element wall shear stress sensor with capacitive sensing. In: Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). Berlin: IEEE, 2019, 2049-2052 [Google Scholar]
- Birch B, Buttsworth D, Zander F. Time-resolved stagnation temperature measurements in hypersonic flows using surface junction thermocouples. Exp Therm Fluid Sci 2020; 119: 110177. [Article] [Google Scholar]
- Yoon E, Wise KD. An integrated mass flow sensor with on-chip CMOS interface circuitry. IEEE Trans Electron Devices 1992; 39: 1376-1386. [Article] [Google Scholar]
- Han S, Peng H, Sun Q, et al. An overview of the development of flexible sensors. Adv Mater 2017; 29: 1700375. [Article] [Google Scholar]
- Liu E, Cai Z, Ye Y, et al. An overview of flexible sensors: Development, application, and challenges. Sensors 2023; 23: 817. [Article] [Google Scholar]
- Luo Y, Abidian MR, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano 2023; 17: 5211-5295. [Article] [Google Scholar]
- Xu K, Lu Y, Yamaguchi T, et al. Highly precise multifunctional thermal management-based flexible sensing sheets. ACS Nano 2019; 13: 14348-14356. [Article] [Google Scholar]
- Sosna C, Buchner R, Lang W. A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode. IEEE Trans Instrum Meas 2010; 59: 1715-1721. [Article] [NASA ADS] [Google Scholar]
- Gallagher PK, Brown ME. Handbook of Thermal Analysis and Calorimetry. Netherlands: Elsevier, 2003 [Google Scholar]
- Neipp C, Hern ndez A, Rodes JJ, et al. An analysis of the classical doppler effect. Eur J Phys 2003; 24: 497-505. [Article] [Google Scholar]
- Pan S, Zhang Z. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019; 7: 2-17. [Article] [Google Scholar]
- Cookson JW. Theory of the piezo-resistive effect. Phys Rev 1935; 47: 194-195. [Article] [NASA ADS] [Google Scholar]
- Phillips KC, Gandhi HH, Mazur E, et al. Ultrafast laser processing of materials: A review. Adv Opt Photon 2015; 7: 684-712. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Huang YA, Wu H, Zhu C, et al. Programmable robotized ‘transfer-and-jet’ printing for large, 3D curved electronics on complex surfaces. Int J Extrem Manuf 2021; 3: 045101. [Article] [Google Scholar]
- Levenson MD, Viswanathan NS, Simpson RA. Improving resolution in photolithography with a phase-shifting mask. IEEE Trans Electron Devices 1982; 29: 1828-1836. [Article] [Google Scholar]
- Jo Y, Park HJ, Kim Y, et al. Form-factor free 3D copper circuits by surface-conformal direct printing and laser writing. Adv Funct Mater 2020; 30: 2004659. [Article] [Google Scholar]
- Ma B, Ren J, Deng J, et al. Flexible thermal sensor array on PI film substrate for underwater applications. In: Proceedings of the2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong: IEEE, 2010, 679-682 [Google Scholar]
- Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014; 5: 5714. [Article] [Google Scholar]
- Petropoulos A, Pagonis DN, Kaltsas G. Flexible PCB-MEMS flow sensor. Procedia Eng 2012; 47: 236-239. [Article] [Google Scholar]
- Maji D, Das S. Integrated flexible thin film sensor around angiographic catheter for flow detection. Procedia Tech 2017; 27: 221-223. [Article] [Google Scholar]
- Wang H, Li S, Wang Y, et al. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv Mater 2020; 32: 1908214. [Article] [Google Scholar]
- Guo L, Xu K, Li J, et al. A MEMS flow sensor based on fish lateral line sensing system. Microsyst Technol 2021; 27: 2571-2578. [Article] [NASA ADS] [Google Scholar]
- Eberhardt WC, Wakefield BF, Murphy CT, et al. Development of an artificial sensor for hydrodynamic detection inspired by a seal’s whisker array. Bioinspir Biomim 2016; 11: 056011. [Article] [PubMed] [Google Scholar]
- Kaidarova A, Khan MA, Marengo M, et al. Wearable multifunctional printed graphene sensors. npj Flex Electron 2019; 3: 15. [Article] [Google Scholar]
- Webb RC, Ma Y, Krishnan S, et al. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci Adv 2015; 1: e1500701. [Article] [Google Scholar]
- Zavanelli N, Kim H, Kim J, et al. At-home wireless monitoring of acute hemodynamic disturbances to detect sleep apnea and sleep stages via a soft sternal patch. Sci Adv 2021; 7: eabl4146. [Article] [Google Scholar]
- Cerimovic S, Treytl A, Glatzl T, et al. Thermal flow sensor for non-invasive measurements in hvac systems. In: Proceedings of the Eurosensors 2018 Conference. Graz: Multidisciplinary Digital Publishing Institute, 2018, 827 [Google Scholar]
- Sun B, Ma B, Deng J, et al. High sensitive micro flexible thermal sensor for flow separation measurements on airfoil. In: Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). Berlin: IEEE, 2019, 1993-1996 [Google Scholar]
- Gao W, Ma B, Luo J, et al. High sensitive flexible-based single-wall carbon nanotubes thermal shear stress sensor for underwater applications. In: Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). Berlin: IEEE, 2019, 2412-2415 [Google Scholar]
- Marengo M, Marinaro G, Kosel J. Flexible temperature and flow sensor from laser-induced graphene. In: Proceedings of the 2017 IEEE Sens. Glasgow: IEEE, 2017, 1-3 [Google Scholar]
- Liu C. Silicon micromachined sensors and actuators for fluid mechanics applications. Dissertation for Doctoral Degree. Pasadena: California Institute of Technology, 1996 [Google Scholar]
- Byon C. Numerical and analytic study on the time-of-flight thermal flow sensor. Int J Heat Mass Transfer 2015; 89: 454-459. [Article] [Google Scholar]
- Aydin M, Onur M, Sisman A. A new method for analysis of constant-temperature thermal response tests. Geothermics 2019; 78: 1-8. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liutanakul P, Awan AB, Pierfederici S, et al. Linear stabilization of a DC bus supplying a constant power load: A general design approach. IEEE Trans Power Electron 2010; 25: 475-488. [Article] [NASA ADS] [Google Scholar]
- Comte-Bellot G. Hot-wire anemometry. Annu Rev Fluid Mech 1976; 8: 209-231. [Article] [Google Scholar]
- Lammerink TSJ, Tas NR, Elwenspoek M et al. Micro-liquid flow sensor. Sens Act Phys 1993; 37: 45-50. [Google Scholar]
- Nguyen NT, Dötzel W. Asymmetrical locations of heaters and sensors relative to each other using heater arrays: A novel method for designing multi-range electrocaloric mass-flow sensors. Sens Actuat A-Phys 1997; 62: 506-512. [Article] [Google Scholar]
- Sturm H, Lang W. Membrane-based thermal flow sensors on flexible substrates. Sens Actuat A-Phys 2013; 195: 113-122. [Article] [Google Scholar]
- Murakami K, Shiraishi D, Mizumi S, et al. Development of a flexible MEMS sensor for subsonic flow. Micromachines 2022; 13: 1299. [Article] [PubMed] [Google Scholar]
- Krishnan SR, Ray TR, Ayer AB, et al. Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Sci Transl Med 2018; 10: eaat8437. [Article] [Google Scholar]
- Xu K, Li Q, Lu Y, et al. Laser direct writing of flexible thermal flow sensors. Nano Lett 2023; 23: 10317-10325. [Article] [Google Scholar]
- Arakane S, Mizoshiri M, Sakurai J, et al. Direct writing of three-dimensional Cu-based thermal flow sensors using femtosecond laser-induced reduction of CuO nanoparticles. J Micromech Microeng 2017; 27: 055013. [Article] [Google Scholar]
- Ferreira RPC, Freire RCS, Deep CS, et al. Hot-wire anemometer with temperature compensation using only one sensor. IEEE Trans Instrum Meas 2001; 50: 954-958. [Article] [NASA ADS] [Google Scholar]
- Munson BR, Young DF, Okiishi TH, et al. Chapter 2—Fundamentals of fluid mechanics. In: Bertin JJ, Cummings RM (eds). Aerodynamics for Engineers. Cambridge: Cambridge University Press, 2021, 33-87 [Google Scholar]
- Boresi A, Schmidt R. Advanced Mechanics of Materials. Hoboken: John Wiley & Sons, 2002 [Google Scholar]
- Xu Z, Fan Y, Wang T, et al. Towards high resolution monitoring of water flow velocity using flat flexible thin mm-sized resistance-typed sensor film (MRSF). Water Res X 2019; 4: 100028. [Article] [Google Scholar]
- Pang C, Lee GY, Kim T, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 2012; 11: 795-801. [Article] [Google Scholar]
- Abolpour Moshizi S, Azadi S, Belford A, et al. Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett 2020; 12: 109. [Article] [Google Scholar]
- Jiang Q, Li R, Wang F, et al. Ultrasensitive airflow sensors based on suspended carbon nanotube networks. Adv Mater 2022; 34: 2107062. [Article] [Google Scholar]
- Huang L, Liu Y, Li G, et al. Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers. Nano Lett 2023; 23: 597-605. [Article] [Google Scholar]
- Hu X, Jiang Y, Ma Z, et al. Bio-inspired flexible lateral line sensor based on P(VDF-TrFE)/BTO nanofiber mat for hydrodynamic perception. Sensors 2019; 19: 5384. [Article] [Google Scholar]
- Zhang Q, Wang Y, Tao R, et al. Flexible ZnO thin film acoustic wave device for gas flow rate measurement. J Micromech Microeng 2020; 30: 095010. [Article] [Google Scholar]
- Wang F, Jin P, Feng Y, et al. Flexible doppler ultrasound device for the monitoring of blood flow velocity. Sci Adv 2021; 7: eabi9283. [Article] [Google Scholar]
- Llana DF, Iñiguez-Gonzalez G, Arriaga F, et al. Time-of-flight adjustment procedure for acoustic measurements in structural timber. BioResour 2016; 11: 3303-3317. [Article] [Google Scholar]
- Harris CM. Effects of humidity on the velocity of sound in air. J Acoust Soc Am 1971; 49: 890-893. [Article] [Google Scholar]
- Asay JR, Lamberson DL, Guenther AH. Pressure and temperature dependence of the acoustic velocities in polymethylmethacrylate. J Appl Phys 1969; 40: 1768-1783. [Article] [NASA ADS] [Google Scholar]
- Begin G, Al-Tamimi KM, Alamdari HH, et al. Respiratory bidirectional ultrasonic TOF flow sensor resilience to ambient temperature fluctuations. IEEE Sens J 2021; 21: 18920-18931. [Article] [Google Scholar]
- Kirihara A, Kondo K, Ishida M, et al. Flexible heat-flow sensing sheets based on the longitudinal spin seebeck effect using one-dimensional spin-current conducting films. Sci Rep 2016; 6: 23114. [Article] [Google Scholar]
- Hribar J, Donlagic D. Optical flow sensor based on the thermal time-of-flight measurement. Opt Express 2021; 29: 8846. [Article] [Google Scholar]
- Li W, Lu L, Fu X, et al. Kármán vortex street driven membrane triboelectric nanogenerator for enhanced ultra-low speed wind energy harvesting and active gas flow sensing. ACS Appl Mater Interfaces 2022; 14: 51018-51028. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu D, Guo X, Li H, et al. Self-powered flow sensing for automobile based on triboelectric nanogenerator with magnetic field modulation mechanism. Nano Energy 2023; 108: 108233. [Article] [Google Scholar]
- Kireev D, Sel K, Ibrahim B, et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat Nanotechnol 2022; 17: 864-870. [Article] [Google Scholar]
- Massaroni C, Nicolo A, Girardi M, et al. Validation of a wearable device and an algorithm for respiratory monitoring during exercise. IEEE Sens J 2019; 19: 4652-4659. [Article] [Google Scholar]
- Park JT, Cutbirth JM, Brewer WH. Experimental methods for hydrodynamic characterization of a very large water tunnel. J Fluids Eng 2005; 127: 1210-1214. [Article] [Google Scholar]
- Tanaka K, Yang SH, Tokudome Y, et al. Flapping-wing dynamics as a natural detector of wind direction. Adv Intell Syst 2021; 3: 2000174. [Article] [Google Scholar]
- Zhou W, Xiao P, Liang Y, et al. Bionic adaptive thin-membranes sensory system based on microspring effect for high-sensitive airflow perception and noncontact manipulation. Adv Funct Mater 2021; 31: 2105323. [Article] [Google Scholar]
- Chen P, An J, Shu S, et al. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv Energy Mater 2021; 11: 2003066. [Article] [Google Scholar]
- Arakeri JH. Bernoulli’s equation. Resonance 2000; 5: 54-71. [Article] [Google Scholar]
- Nedeff V, Bejenariu C, Lazar G, et al. Generalized lift force for complex fluid. Powder Tech 2013; 235: 685-695. [Article] [Google Scholar]
- Carr LW. Progress in analysis and prediction of dynamic stall. J Aircr 1988; 25: 6-17. [Article] [Google Scholar]
- Xiong W, Zhu C, Guo D, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 2021; 90: 106550. [Article] [Google Scholar]
- Xu Z, Cao LNY, Li C, et al. Digital mapping of surface turbulence status and aerodynamic stall on wings of a flying aircraft. Nat Commun 2023; 14: 2792. [Article] [Google Scholar]
- Gong Z, Di W, Jiang Y, et al. Flexible calorimetric flow sensor with unprecedented sensitivity and directional resolution for multiple flight parameter detection. Nat Commun 2024; 15: 3091. [Article] [Google Scholar]
- Wahlund KG. Flow field-flow fractionation: Critical overview. J Chromatogr A 2013; 1287: 97-112. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ku DN. Blood flow in arteries. Annu Rev Fluid Mech 1997; 29: 399-434. [Article] [Google Scholar]
- Boutry CM, Beker L, Kaizawa Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat Biomed Eng 2019; 3: 47-57. [Article] [Google Scholar]
- Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2018; 2: 687-695. [Article] [Google Scholar]
- Herbert R, Lim HR, Rigo B, et al. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci Adv 2022; 8: eabm1175. [Article] [Google Scholar]
- Nogués MA, Benarroch E. Abnormalities of respiratory control and the respiratory motor unit. Neurologist 2008; 14: 273-288. [Article] [Google Scholar]
- Jiang T, Deng L, Qiu W, et al. Wearable breath monitoring via a hot-film/calorimetric airflow sensing system. Biosens Bioelectron 2020; 163: 112288. [Article] [Google Scholar]
- Li G, Chen X, Zhou F, et al. Self-powered soft robot in the Mariana Trench. Nature 2021; 591: 66-71. [Article] [Google Scholar]
- Rojstaczer S. Determination of fluid flow properties from the response of water levels in wells to atmospheric loading. Water Resour Res 1988; 24: 1927-1938. [Article] [Google Scholar]
- Chun W, Chou N, Cho S, et al. Evaluation of sub-micrometer parylene C films as an insulation layer using electrochemical impedance spectroscopy. Prog Org Coat 2014; 77: 537-547. [Article] [Google Scholar]
- Shu S, Wang T, He J, et al. Bionic underwater multimodal sensor inspired by fish lateralis neuromasts. Device 2023; 1: 100175. [Article] [Google Scholar]
- Wang S, Xu P, Wang X, et al. Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy 2022; 97: 107210. [Article] [Google Scholar]
- Sreenivasan KR. Fluid turbulence. Rev Mod Phys 1999; 71: S383-S395. [Article] [Google Scholar]
- Hadjittofis E, Das SC, Zhang GGZ, et al. Chapter 8—Interfacial phenomena. In: Qiu Y, Chen Y, Zhang GGZ (eds). Developing Solid Oral Dosage Forms. Pharmaceutical Theory and Practice. 2nd ed. Amsterdam: Elsevier, 2017, 225-252 [Google Scholar]
- Wille R. Kármán vortex streets. Adv Appl Mech 1960, 6: 273-287 [Google Scholar]
- Smart PL, Laidlaw IMS. An evaluation of some fluorescent dyes for water tracing. Water Resour Res 1977; 13: 15-33. [Article] [Google Scholar]
- Yang Y, Chen J, Engel J, et al. Distant touch hydrodynamic imaging with an artificial lateral line. Proc Natl Acad Sci USA 2006; 103: 18891-18895. [Article] [Google Scholar]
- Wang Y, Song M, Fu X. A biomimetic orthogonal flow sensor based on an asymmetric optical fiber sensory structure for marine sensing. Bioinspir Biomim 2024; 19: 036002. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.