Issue
Natl Sci Open
Volume 4, Number 2, 2025
Special Topic: Flexible Electronics and Micro/Nanomanufacturing
Article Number 20240049
Number of page(s) 13
Section Engineering
DOI https://doi.org/10.1360/nso/20240049
Published online 29 November 2024
  • Liu M, Pu X, Jiang C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 2017; 29: 1703700. [Article] [PubMed] [Google Scholar]
  • Du W, Li Z, Zhao Y, et al. Biocompatible and breathable all-fiber-based piezoresistive sensor with high sensitivity for human physiological movements monitoring. Chem Eng J 2022; 446: 137268. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lu N, Kim DH. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 2014; 1: 53-62. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou X, Cao W. Flexible and stretchable carbon-based sensors and actuators for soft robots. Nanomaterials 2023; 13: 316. [Article] [Google Scholar]
  • Yeo JC, Yap HK, Xi W, et al. Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv Mater Technol 2016; 1: 1600018. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater 2021; 33: 2002640. [Article] [PubMed] [Google Scholar]
  • Guo X, Xing T, Feng J. Simultaneously stretchable and compressible flexible strain sensors based on carbon nanotube composites for motion monitoring and human-computer interactions. ACS Appl Nano Mater 2022; 5: 18427-18437. [Article] [Google Scholar]
  • Nie F, Gu Y, Zhao L, et al. Construction of conductive polymer coatings onto flexible PDMS foam composites with exceptional mechanical robustness for sensitive strain sensing applications. Adv Sens Res 2024; 3: 2300140. [Article] [CrossRef] [Google Scholar]
  • Duan L, D’hooge DR, Cardon L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog Mater Sci 2020; 114: 100617. [Article] [Google Scholar]
  • Gao Y, Yan C, Huang H, et al. Microchannel-confined mxene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater 2020; 30: 1909603. [Article] [Google Scholar]
  • Chen H, Chen Z, Mao M, et al. Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities. Adv Funct Mater 2023; 33: 2304927. [Article] [Google Scholar]
  • Wang H, Zhou R, Li D, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021; 15: 9690-9700. [Article] [Google Scholar]
  • Yuan H, Lei T, Qin Y, et al. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy 2019; 59: 84-90. [Article] [Google Scholar]
  • Pei H, Jing J, Chen Y, et al. 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: Promising strategy for flexible electronic skin. Nano Energy 2023; 109: 108303. [Article] [Google Scholar]
  • Zhou P, Zheng Z, Wang B, et al. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric. Nano Energy 2022; 99: 107400. [Article] [Google Scholar]
  • Ye S, Cheng C, Chen X, et al. High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 2019; 60: 701-714. [Article] [Google Scholar]
  • Wang H, Li Z, Liu Z, et al. Flexible capacitive pressure sensors for wearable electronics. J Mater Chem C 2022; 10: 1594-1605. [Article] [Google Scholar]
  • Xu M, Guan L, Chen J, et al. A highly sensitive, flexible capacitive pressure sensor based on strontium alginate with crater microstructure. J Alloys Compd 2024; 997: 174904. [Article] [Google Scholar]
  • Farman M, Surendra M, Prajesh R, et al. All-polydimethylsiloxane-based highly flexible and stable capacitive pressure sensors with engineered interfaces for conformable electronic skin. ACS Appl Mater Interfaces 2023; 15: 34195-34205. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tan J, Zhang P, Zhang K, et al. Fabrication of flexible capacitive pressure sensors by adjusting the height of the interdigital electrode. ACS Appl Electron Mater 2024; 6: 4539-4547. [Article] [Google Scholar]
  • Wu Y, Ma Y, Zheng H, et al. Piezoelectric materials for flexible and wearable electronics: A review. Mater Des 2021; 211: 110164. [Article] [Google Scholar]
  • Duan S, Wu J, Xia J, et al. Innovation strategy selection facilitates high-performance flexible piezoelectric sensors. Sensors 2020; 20: 2820. [Article] [Google Scholar]
  • Zhang Y, Wu M, Zhu Q, et al. Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system. Adv Funct Mater 2019; 29: 1904259. [Article] [Google Scholar]
  • Chang SM, Hur S, Park J, et al. Optimization of piezoelectric polymer composites and 3D printing parameters for flexible tactile sensors. Add Manuf 2023; 67: 103470. [Article] [Google Scholar]
  • Chen X, Tian H, Li X, et al. A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale 2015; 7: 11536-11544. [Article] [Google Scholar]
  • Jiang H, Song L, Huang ZX, et al. A novel concept of hierarchical porous structural design on enhancing output performance of piezoelectric nanogenerator. Nano Energy 2022; 104: 107921. [Article] [Google Scholar]
  • Liu H, Lin X, Zhang S, et al. Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J Mater Chem A 2020; 8: 19631-19640. [Article] [Google Scholar]
  • Xu J, Dapino MJ, Gallego-Perez D, et al. Microphone based on polyvinylidene fluoride (PVDF) micro-pillars and patterned electrodes. Sens Actuat A-Phys 2009; 153: 24-32. [Article] [Google Scholar]
  • Chen X, Li X, Shao J, et al. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017; 13: 1604245. [Article] [Google Scholar]
  • Lee J, Yoon H, Kim TY, et al. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv Funct Mater 2015; 25: 3203-3209. [Article] [Google Scholar]
  • Zhang J, Ye S, Liu H, et al. 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors. Nano Energy 2020; 77: 105300. [Article] [Google Scholar]
  • Wang C, Zheng M, Gao X, et al. High performance flexible piezocomposites based on a particle alignment strategy. Eur J Inorg Chem 2020; 2020: 770-772. [Article] [Google Scholar]
  • Zhang Y, Jeong CK, Wang J, et al. Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy 2018; 50: 35-42. [Article] [Google Scholar]
  • Ren X, Fan H, Zhao Y, et al. Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl Mater Interfaces 2016; 8: 26190-26197. [Article] [Google Scholar]
  • Deutz DB, Mascarenhas NT, Schelen JBJ, et al. Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS. Adv Funct Mater 2017; 27: 1700728. [Article] [Google Scholar]
  • Mamada S, Yaguchi N, Hansaka M, et al. Matrix influence on the piezoelectric properties of piezoelectric ceramic/polymer composite exhibiting particle alignment. J Appl Polym Sci 2015; 132: app.41817. [Article] [Google Scholar]
  • Gao X, Zheng M, Yan X, et al. Ultrahigh current density and fatigue stability in flexible energy harvester by designing delivery paths. Mater Today Phys 2021; 19: 100424. [Article] [Google Scholar]
  • Barbero DR, Boulanger N. Ultralow percolation threshold in nanoconfined domains. ACS Nano 2017; 11: 9906-9913. [Article] [Google Scholar]
  • Geng RJ, E SF, Li CW, et al. High crystallinity boron nitride nanosheets: Preparation and the property of BNNSs/polyvinyl alcohol composite film. J Inorg Mater 2019; 34: 401. [Article] [Google Scholar]
  • Wu M, Zhou Y, Zhang H, et al. 2D boron nitride nanosheets for smart thermal management and advanced dielectrics. Adv Mater Inter 2022; 9: 2200610. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.