Open Access
Issue |
Natl Sci Open
Volume 4, Number 2, 2025
|
|
---|---|---|
Article Number | 20240052 | |
Number of page(s) | 14 | |
Section | Earth and Environmental Sciences | |
DOI | https://doi.org/10.1360/nso/20240052 | |
Published online | 16 January 2025 |
- Alongi DM. Carbon balance in salt marsh and mangrove ecosystems: A global synthesis. J Mar Sci Eng 2020; 8: 767. [Article] [Google Scholar]
- Regnier P, Resplandy L, Najjar RG, et al. The land-to-ocean loops of the global carbon cycle. Nature 2022; 603: 401-410. [Article] [Google Scholar]
- Saintilan N, Horton B, Törnqvist TE, et al. Widespread retreat of coastal habitat is likely at warming levels above 1.5°C. Nature 2023; 621: 112-119. [Article] [Google Scholar]
- Wang C, Qiu Y, Hao Z, et al. Global patterns of organic carbon transfer and accumulation across the land-ocean continuum constrained by radiocarbon data. Nat Geosci 2024; 17: 778-786. [Article] [Google Scholar]
- Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 2013; 6: 597-607. [Article] [Google Scholar]
- Zhou Y, Zhao C, He C, et al. Characterization of dissolved organic matter processing between surface sediment porewater and overlying bottom water in the Yangtze River Estuary. Water Res 2022; 215: 118260. [Article] [Google Scholar]
- Marschner B, Brodowski S, Dreves A, et al. How relevant is recalcitrance for the stabilization of organic matter in soils?. Z Pflanzenernähr Bodenk 2008; 171: 91-110. [Article] [Google Scholar]
- Lützow M, Kögel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur J Soil Sci 2006; 57: 426-445. [Article] [Google Scholar]
- Guimond JA, Seyfferth AL, Moffett KB, et al. A physical-biogeochemical mechanism for negative feedback between marsh crabs and carbon storage. Environ Res Lett 2020; 15: 034024. [Article] [Google Scholar]
- Xiao K, Wilson AM, Li H, et al. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnol Oceanogr 2021; 66: 14-29. [Article] [Google Scholar]
- Wu S, Konhauser KO, Chen B, et al. “Reactive Mineral Sink” drives soil organic matter dynamics and stabilization. npj Mater Sustain 2023; 1: 3. [Article] [Google Scholar]
- Moore OW, Curti L, Woulds C, et al. Long-term organic carbon preservation enhanced by iron and manganese. Nature 2023; 621: 312-317. [Article] [Google Scholar]
- Fichot CG, Benner R. The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Glob Biogeochem Cycle 2014; 28: 300-318. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Homoky WB, Conway TM, John SG, et al. Iron colloids dominate sedimentary supply to the ocean interior. Proc Natl Acad Sci USA 2021; 118: e2016078118. [Article] [Google Scholar]
- Ma D, Wu J, Yang P, et al. Coupled manganese redox cycling and organic carbon degradation on mineral surfaces. Environ Sci Technol 2020; 54: 8801-8810. [Article] [Google Scholar]
- Wang Y, Wang H, He JS, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat Commun 2017; 8: 15972. [Article] [Google Scholar]
- Chen C, Hall SJ, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat Commun 2020; 11: 2255. [Article] [Google Scholar]
- Liu C, Wang S, Zhao Y, et al. Enhanced microbial contribution to mineral-associated organic carbon accrual in drained wetlands: Beyond direct lignin-iron interactions. Soil Biol Biochem 2023; 185: 109152. [Article] [Google Scholar]
- Madison AS, Tebo BM, Mucci A, et al. Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 2013; 341: 875-878. [Article] [Google Scholar]
- Thibault de Chanvalon A, Luther Iii GW, Oldham VE, et al. Distribution and stability of Mn complexes in the ocean: Influence of hydrothermal plumes and weather events. Limnol Oceanogr 2023; 68: 455-466. [Article] [Google Scholar]
- Tait DR, Maher DT, Macklin PA, et al. Mangrove pore water exchange across a latitudinal gradient. Geophys Res Lett 2016; 43: 3334-3341. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hines ME, Orem WH, Lyons WB, et al. Microbial activity and bioturbation-induced oscillations in pore water chemistry of estuarine sediments in spring. Nature 1982; 299: 433-435. [Article] [Google Scholar]
- Fanjul E, Escapa M, Montemayor D, et al. Effect of crab bioturbation on organic matter processing in South West Atlantic intertidal sediments. J Sea Res 2015; 95: 206-216. [Article] [Google Scholar]
- Zhou Z, Steiner N, Fivash GS, et al. Temporal dynamics of heatwaves are key drivers of sediment mixing by bioturbators. Limnol Oceanogr 2023; 68: 1105-1116. [Article] [Google Scholar]
- Veldkamp E, Schmidt M, Markwitz C, et al. Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland. Commun Earth Environ 2023; 4: 20. [Article] [NASA ADS] [Google Scholar]
- Cardinael R, Hoeffner K, Chenu C, et al. Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biol Fertil Soils 2019; 55: 171-183. [Article] [NASA ADS] [Google Scholar]
- Nabout JC, Bini LM, Diniz-Filho JAF. Global literature of fiddler crabs, genus Uca (Decapoda, Ocypodidae): Trends and future directions. Iheringia Sér Zool 2010; 100: 463-468. [Article] [Google Scholar]
- Liu Y, Reible D, Hussain F, et al. Role of bioroughness, bioirrigation, and turbulence on oxygen dynamics at the sediment-water interface. Water Resour Res 2019; 55: 8061-8075. [Article] [Google Scholar]
- Xiao K, Pan F, Santos IR, et al. Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils. Geoderma 2022; 424: 115990. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Stahl MO, Tarek MH, Yeo DCJ, et al. Crab burrows as conduits for groundwater-surface water exchange in Bangladesh. Geophys Res Lett 2014; 41: 8342-8347. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Breier JA, Nidzieko N, Monismith S, et al. Tidally regulated chemical fluxes across the sediment—Water interface in Elkhorn Slough, California: Evidence from a coupled geochemical and hydrodynamic approach. Limnol Oceanogr 2009; 54: 1964-1980. [Article] [Google Scholar]
- Qin G, Lu Z, Gan S, et al. Fiddler crab bioturbation stimulates methane emissions in mangroves: Insights into microbial mechanisms. Soil Biol Biochem 2024; 194: 109445. [Article] [Google Scholar]
- van de Velde SJ, Dale AW, Arndt S. Bioturbation and the δ56Fe signature of dissolved iron fluxes from marine sediments. R Soc Open Sci 2023; 10: 220010. [Article] [Google Scholar]
- He C, Zhang Y, Li Y, et al. In-house standard method for molecular characterization of dissolved organic matter by FT-ICR mass spectrometry. ACS Omega 2020; 5: 11730-11736. [Article] [Google Scholar]
- Xiao K, Wu Y, Pan F, et al. Widespread crab burrows enhance greenhouse gas emissions from coastal blue carbon ecosystems. Commun Earth Environ 2024; 5: 437. [Article] [NASA ADS] [Google Scholar]
- Wang K, Pang Y, Gao C, et al. Hydrological management affected dissolved organic matter chemistry and organic carbon burial in the three gorges reservoir. Water Res 2021; 199: 117195. [Article] [Google Scholar]
- Murphy KR, Stedmon CA, Graeber D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods 2013; 5: 6557. [Article] [Google Scholar]
- Koch BP, Dittmar T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Comm Mass Spectrom 2006; 20: 926-932. [Article] [Google Scholar]
- Kellerman AM, Kothawala DN, Dittmar T, et al. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat Geosci 2015; 8: 454-457. [Article] [Google Scholar]
- D’Andrilli J, Silverman V, Buckley S, et al. Inferring ecosystem function from dissolved organic matter optical properties: A critical review. Environ Sci Technol 2022; 56: 11146-11161. [Article] [Google Scholar]
- Rivas-Ubach A, Liu Y, Bianchi TS, et al. Moving beyond the van Krevelen diagram: A new stoichiometric approach for compound classification in organisms. Anal Chem 2018; 90: 6152-6160. [Article] [Google Scholar]
- Stegen JC, Johnson T, Fredrickson JK, et al. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nat Commun 2018; 9: 585. [Article] [Google Scholar]
- LaRowe DE, van Cappellen P. Degradation of natural organic matter: A thermodynamic analysis. Geochim Cosmochim Acta 2011; 75: 2030-2042. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen L, Liang J, Qin S, et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat Commun 2016; 7: 13046. [Article] [Google Scholar]
- Xiao K, Wilson AM, Li H, et al. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: A modeling study. Adv Water Resour 2019; 132: 103408. [Article] [CrossRef] [Google Scholar]
- McKnight DM, Boyer EW, Westerhoff PK, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 2001; 46: 38-48. [Article] [Google Scholar]
- Chantigny MH. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma 2003; 113: 357-380. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tank SE, Lesack LFW, Gareis JAL, et al. Multiple tracers demonstrate distinct sources of dissolved organic matter to lakes of the Mackenzie Delta, western Canadian Arctic. Limnol Oceanogr 2011; 56: 1297-1309. [Article] [Google Scholar]
- Fomina M, Skorochod I. Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals 2020; 10: 861. [Article] [Google Scholar]
- Ding Z, Ding Y, Liu F, et al. Coupled sorption and oxidation of soil dissolved organic matter on manganese oxides: Nano/sub-nanoscale distribution and molecular transformation. Environ Sci Technol 2022; 56: 2783-2793. [Article] [Google Scholar]
- Boye K, Noël V, Tfaily MM, et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat Geosci 2017; 10: 415-419. [Article] [Google Scholar]
- Gunina A, Kuzyakov Y. From energy to (soil organic) matter. Glob Change Biol 2022; 28: 2169-2182. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang YH, Zhang P, He C, et al. Molecular signatures of soil-derived dissolved organic matter constrained by mineral weathering. Fundam Res 2023; 3: 377-383. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hemingway JD, Rothman DH, Grant KE, et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 2019; 570: 228-231. [Article] [Google Scholar]
- Herbert ER, Windham-Myers L, Kirwan ML. Sea-level rise enhances carbon accumulation in United States tidal wetlands. One Earth 2021; 4: 425-433. [Article] [Google Scholar]
- Spivak AC, Sanderman J, Bowen JL, et al. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat Geosci 2019; 12: 685-692. [Article] [Google Scholar]
- Ouyang X, Maher DT, Santos IR. Climate change decreases groundwater carbon discharges in global tidal wetlands. One Earth 2024; 7: 1442-1455. [Article] [Google Scholar]
- Jiao N, Herndl GJ, Hansell DA, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol 2010; 8: 593-599. [Article] [Google Scholar]
- Li C, Chen J, Liao X, et al. Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nat Commun 2023; 14: 8076. [Article] [CrossRef] [PubMed] [Google Scholar]
- Atwood TB, Connolly RM, Ritchie EG, et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat Clim Change 2015; 5: 1038-1045. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.