Open Access
Issue
Natl Sci Open
Volume 4, Number 5, 2025
Article Number 20250030
Number of page(s) 13
Section Chemistry
DOI https://doi.org/10.1360/nso/20250030
Published online 20 August 2025
  • Indiveri G, Douglas R. Neuromorphic vision sensors. Science 2000; 288: 1189-1190. [Article] [Google Scholar]
  • Choi C, Lee GJ, Chang S, et al. Inspiration from visual ecology for advancing multifunctional robotic vision systems: Bio-inspired electronic eyes and neuromorphic image sensors. Adv Mater 2024; 36: e2412252. [Article] [Google Scholar]
  • Fu J, Nie C, Sun F, et al. Bionic visual-audio photodetectors with in-sensor perception and preprocessing. Sci Adv 2024; 10: eadk8199. [Article] [Google Scholar]
  • Xu L, Liu J, Guo X, et al. Ultrasensitive dim-light neuromorphic vision sensing via momentum-conserved reconfigurable van der Waals heterostructure. Nat Commun 2024; 15: 9011. [Article] [Google Scholar]
  • Sun R, Hou Z, Chen Q, et al. Orientation-selective memory switching in Quasi-1D NbSe3 neuromorphic device for omnibearing motion detection. Adv Mater 2025; 37: e2409017. [Article] [Google Scholar]
  • Huang PY, Jiang BY, Chen HJ, et al. Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction. Nat Commun 2023; 14: 6736. [Article] [Google Scholar]
  • Zhang Z, Wang S, Liu C, et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol 2022; 17: 27-32. [Article] [Google Scholar]
  • Chen J, Zhou Z, Kim BJ, et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat Nanotechnol 2023; 18: 882-888. [Article] [Google Scholar]
  • Liao F, Zhou F, Chai Y. Neuromorphic vision sensors: Principle, progress and perspectives. J Semicond 2021; 42: 013105. [Article] [Google Scholar]
  • Kudithipudi D, Schuman C, Vineyard CM, et al. Neuromorphic computing at scale. Nature 2025; 637: 801-812. [Article] [Google Scholar]
  • Livingstone M, Hubel D. Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 1988; 240: 740-749. [Article] [Google Scholar]
  • Zhu S, Xie T, Lv Z, et al. Hierarchies in visual pathway: Functions and inspired artificial vision. Adv Mater 2023; 36: 2301986. [Article] [Google Scholar]
  • Yau KW, Hardie RC. Phototransduction motifs and variations. Cell 2009; 139: 246-264. [Article] [Google Scholar]
  • Gu L, Poddar S, Lin Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020; 581: 278-282. [Article] [Google Scholar]
  • Chen K, Hu H, Song I, et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat Photon 2023; 17: 629-637. [Article] [Google Scholar]
  • Yu SY, Hu J, Li Z, et al. Metal-organic framework nanofluidic synapse. J Am Chem Soc 2024; 146: 27022-27029. [Article] [Google Scholar]
  • Duan Z, Xu Y, Li Z, et al. Neuromorphic nanofluidic sense digitalization. Angew Chem Int Ed 2025; 64: e202420602. [Article] [Google Scholar]
  • Li Z, Chen MH, Wu QQ, et al. A metal-organic framework neuron. Natl Sci Rev 2025; 12: nwaf213. [Article] [Google Scholar]
  • Chen Y, Han B, Gobbi M, et al. Responsive molecules for organic neuromorphic devices: Harnessing memory diversification. Adv Mater 2025; 37: 2418281. [Article] [Google Scholar]
  • Xu YT, Yu SY, Li Z, et al. A nanofluidic spiking synapse. Proc Natl Acad Sci USA 2024; 121: e2403143121. [Article] [Google Scholar]
  • Zhao X, Zou H, Wang M, et al. Conformal neuromorphic bioelectronics for sense digitalization. Adv Mater 2024; 36: 2403444. [Article] [Google Scholar]
  • Wu Q, Li Z, Chen M, et al. Reticular photoelectrochemical transistor with biochemical metaplasticity. Adv Mater 2025; : 2504338. [Article] [Google Scholar]
  • Huang W, Chen J, Yao Y, et al. Vertical organic electrochemical transistors for complementary circuits. Nature 2023; 613: 496-502. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Chen X, Marks A, Paulsen BD, et al. n-Type rigid semiconducting polymers bearing oligo(ethylene glycol) side chains for high-performance organic electrochemical transistors. Angew Chem Int Ed 2020; 60: 9368-9373. [Article] [Google Scholar]
  • Xu X, Zhang H, Shao L, et al. An aqueous electrolyte gated artificial synapse with synaptic plasticity selectively mediated by biomolecules. Angew Chem Int Ed 2023; 62: e202302723. [Article] [Google Scholar]
  • Yao Y, Pankow RM, Huang W, et al. An organic electrochemical neuron for a neuromorphic perception system. Proc Natl Acad Sci USA 2025; 122: e2414879122. [Article] [Google Scholar]
  • Laswick Z, Wu X, Surendran A, et al. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat Commun 2024; 15: 6309. [Article] [Google Scholar]
  • Song J, Liu H, Zhao Z, et al. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci Adv 2023; 9: eadd9627. [Article] [Google Scholar]
  • Cong S, Chen J, Xie M, et al. Single ambipolar OECT-based inverter with volatility and nonvolatility on demand. Sci Adv 2024; 10: eadq9405. [Article] [Google Scholar]
  • Wang S, Chen X, Zhao C, et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat Electron 2023; 6: 281-291. [Article] [Google Scholar]
  • Lobosco A, Lubrano C, Rana D, et al. Enzyme-mediated organic neurohybrid synapses. Adv Mater 2024; 36: 2409614. [Article] [Google Scholar]
  • Harikesh PC, Yang CY, Wu HY, et al. Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat Mater 2023; 22: 242-248. [Article] [Google Scholar]
  • Qiu J, Chen P, Wang M, et al. Compact artificial synapse-neuron module with chemically mediated spiking behaviors. ACS Nano 2025; 19: 12298-12307. [Article] [Google Scholar]
  • Zhao WW, Xu JJ, Chen HY. Photoelectrochemical bioanalysis: The state of the art. Chem Soc Rev 2015; 44: 729-741. [Article] [Google Scholar]
  • Zhao WW, Xu JJ, Chen HY. Photoelectrochemical DNA biosensors. Chem Rev 2014; 114: 7421-7441. [Article] [Google Scholar]
  • Ruan Y, Chen F, Xu Y, et al. An integrated photoelectrochemical nanotool for intracellular drug delivery and evaluation of treatment effect. Angew Chem Int Ed 2021; 60: 25762-25765. [Article] [Google Scholar]
  • Wang H, Xu Y, Wang B, et al. A photoelectrochemical nanoreactor for single-cell sampling and near zero-background faradaic detection of intracellular microRNA. Angew Chem Int Ed 2022; 61: e202212752. [Article] [Google Scholar]
  • Hu J, Lu M, Chen F, et al. Multifunctional hydrogel hybrid-gated organic photoelectrochemical transistor for biosensing. Adv Funct Mater 2022; 32: 2109046. [Article] [Google Scholar]
  • Gao G, Chen J, Jing M, et al. Functional metal-organic frameworks for maximizing transconductance of organic photoelectrochemical transistor at zero gate bias and biological interfacing application. Adv Funct Mater 2023; 33: 2300580. [Article] [Google Scholar]
  • Hu J, Li Z, Huang Y, et al. Nanocomposite hydrogel enables color-gated organic photoelectrochemical transistor biodetection. Adv Funct Mater 2024; 35: 2412928. [Article] [Google Scholar]
  • Wang Z, Shi X, Hu J, et al. PCN-134(Fe)-gated organic photoelectrochemical transistor with unique dual-directional signaling. Adv Funct Mater 2025; 35: 2414037. [Article] [Google Scholar]
  • Wang Z, Shi X, Chen F, et al. Ag/AgCl-like photogating of a COF-on-MOF heterojunction in organic photoelectrochemical transistor. Adv Funct Mater 2024; 34: 2404497. [Article] [Google Scholar]
  • Wang C, Jiang Y, Li Z, et al. Graphene photoelectrochemical transistor for dual-directional signal-on biosensing. Adv Funct Mater 2025; 35: 2500235. [Article] [Google Scholar]
  • Druet V, Ohayon D, Petoukhoff CE, et al. A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat Commun 2023; 14: 5481. [Article] [Google Scholar]
  • Corrado F, Bruno U, Prato M, et al. Azobenzene-based optoelectronic transistors for neurohybrid building blocks. Nat Commun 2023; 14: 6760. [Article] [Google Scholar]
  • Hu J, Jing M, Huang Y, et al. A photoelectrochemical retinomorphic synapse. Adv Mater 2024; 36: e2405887. [Article] [Google Scholar]
  • Huang Y, Li Z, Yuan C, et al. Organic photoelectrochemical multisensory integration. Adv Mater 2025; 37: 2503030. [Article] [Google Scholar]
  • Van Essen DC, Anderson CH, Felleman DJ. Information processing in the primate visual system: An integrated systems perspective. Science 1992; 255: 419-423. [Article] [Google Scholar]
  • Sincich LC, Horton JC. Divided by cytochrome oxidase: A map of the projections from V1 to V2 in macaques. Science 2002; 295: 1734-1737. [Article] [Google Scholar]
  • Tamietto M, Morrone MC. Visual plasticity: Blindsight bridges anatomy and function in the visual system. Curr Biol 2016; 26: R70-R73. [Article] [Google Scholar]
  • Freud E, Plaut DC, Behrmann M. ‘What’ is happening in the dorsal visual pathway. Trends Cogn Sci 2016; 20: 773-784. [Article] [Google Scholar]
  • Kravitz DJ, Saleem KS, Baker CI, et al. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 2013; 17: 26-49. [Article] [Google Scholar]
  • Koshland DE Jr., Goldbeter A, Stock JB. Amplification and adaptation in regulatory and sensory systems. Science 1982; 217: 220-225. [Article] [Google Scholar]
  • Solomon SG, Peirce JW, Dhruv NT, et al. Profound contrast adaptation early in the visual pathway. Neuron 2004; 42: 155-162. [Article] [Google Scholar]
  • Cao X, Huang A, Liang C, et al. Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C–H bonds via water oxidation. J Am Chem Soc 2022; 144: 3386-3397. [Article] [Google Scholar]
  • Fan C, Lai J, Shao Z, et al. Target-induced photocurrent-polarity-switching PEC sensing platform based on in situ generation of oxygen vacancy-modulated energy band structures. Anal Chem 2023; 95: 15049-15056. [Article] [Google Scholar]
  • Zhao M, Wang Y, Ma Q, et al. Ultrathin 2D metal-organic framework nanosheets. Adv Mater 2015; 27: 7372-7378. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhao Y, Wang J, Pei R. Micron-sized ultrathin metal-organic framework sheet. J Am Chem Soc 2020; 142: 10331-10336. [Article] [Google Scholar]
  • Zhang G, Wu H, Chen D, et al. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ 2022; 7: 176-204. [Article] [Google Scholar]
  • Eisenberg D, Ahn HS, Bard AJ. Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide. J Am Chem Soc 2014; 136: 14011-14014. [Article] [Google Scholar]
  • Seo D, Won S, Kim JT, et al. Adopting back reduction current as an additional output signal for achieving photoelectrochemical differentiated detection. Anal Chem 2022; 94: 2063-2071. [Article] [Google Scholar]
  • Peter LM. Dynamic aspects of semiconductor photoelectrochemistry. Chem Rev 1990; 90: 753-769. [Article] [Google Scholar]
  • Qiu J, Hajibabaei H, Nellist MR, et al. Catalyst deposition on photoanodes: the roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology. ACS Energy Lett 2018; 3: 961-969. [Article] [Google Scholar]
  • Li L, Li S, Wang W, et al. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat Commun 2024; 15: 6261. [Article] [Google Scholar]
  • Zhao T, Yue W, Deng Q, et al. Neuromorphic transistors integrating photo-sensor, optical memory and visual synapses for artificial vision application. Adv Mater 2025; 37: 2419208. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.