Open Access
Issue
Natl Sci Open
Volume 4, Number 5, 2025
Article Number 20250036
Number of page(s) 9
Section Materials Science
DOI https://doi.org/10.1360/nso/20250036
Published online 03 September 2025
  • Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018; 556: 43-50. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018; 556: 80-84. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chen G, Jiang L, Wu S, et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat Phys 2019; 15: 237-241. [Article] [Google Scholar]
  • Shabani S, Halbertal D, Wu W, et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat Phys 2021; 17: 720-725. [Article] [Google Scholar]
  • Tang K, Qi W. Moiré-pattern-tuned electronic structures of van der Waals heterostructures. Adv Funct Mater 2020; 30: 2002672. [Article] [Google Scholar]
  • Yoo H, Engelke R, Carr S, et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat Mater 2019; 18: 448-453. [Article] [Google Scholar]
  • Zhao P, Xiao C, Yao W. Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate. npj 2D Mater Appl 2021; 5: 38. [Article] [Google Scholar]
  • Shimazaki Y, Schwartz I, Watanabe K, et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 2020; 580: 472-477. [Article] [Google Scholar]
  • Tang Y, Li L, Li T, et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020; 579: 353-358. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lau CN, Bockrath MW, Mak KF, et al. Reproducibility in the fabrication and physics of moiré materials. Nature 2022; 602: 41-50. [Article] [Google Scholar]
  • Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene. Science 2019; 363: 1059-1064. [Article] [Google Scholar]
  • Brzhezinskaya M, Kononenko O, Matveev V, et al. Engineering of numerous moiré superlattices in twisted multilayer graphene for twistronics and straintronics applications. ACS Nano 2021; 15: 12358-12366. [Article] [Google Scholar]
  • Zhu J, Shang W, Ning J, et al. Twisted angle modulated structural property, electronic structure and carrier transport of MoS2/AlN(0001) mixed-dimensional van der Waals heterostructure. Appl Surf Sci 2021; 563: 150330. [Article] [Google Scholar]
  • Wang L, Zihlmann S, Liu MH, et al. New generation of moiré superlattices in doubly aligned hBN/graphene/hBN heterostructures. Nano Lett 2019; 19: 2371-2376. [Article] [Google Scholar]
  • Fang Y, Liu Y, Qi L, et al. 2D graphdiyne: An emerging carbon material. Chem Soc Rev 2022; 51: 2681-2709. [Article] [Google Scholar]
  • Yan H, Yu P, Han G, et al. High-yield and damage-free exfoliation of layered graphdiyne in aqueous phase. Angew Chem Int Ed 2019; 58: 746-750. [Article] [Google Scholar]
  • Li Y, Xu L, Liu H, et al. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem Soc Rev 2014; 43: 2572-2586. [Article] [Google Scholar]
  • Hu G, He J, Chen J, et al. Self-assembly of wheel-shaped nanographdiynes and self-template growth of graphdiyne. J Am Chem Soc 2024; 146: 4123-4133. [Article] [Google Scholar]
  • Liu Y, Dai F, Bai H, et al. Exciton localization modulated by ultradeep moiré potential in twisted bilayer γ-graphdiyne. J Am Chem Soc 2024; 146: 14593-14599. [Article] [Google Scholar]
  • Ma K, Wu J, Wang X, et al. Periodically Interrupting Bonding Behavior to Reformat Delocalized Electronic States of Graphdiyne for Improved Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed 2022; 61: e202211094. [Article] [Google Scholar]
  • Fan W, Zhang S, Xu C, et al. Grain boundary perfection enabled by pyridinic nitrogen doped graphdiyne in hybrid perovskite. Adv Funct Mater 2021; 31: 2104633. [Article] [Google Scholar]
  • Michaud-Rioux V, Zhang L, Guo H. RESCU: A real space electronic structure method. J Comput Phys 2016; 307: 593-613. [Article] [Google Scholar]
  • Xiao Y, Liu J, Fu L. Moiré is more: Access to new properties of two-dimensional layered materials. Matter 2020; 3: 1142-1161. [Article] [Google Scholar]
  • Brandbyge M, Mozos JL, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B 2002; 65: 165401. [Article] [Google Scholar]
  • Smidstrup S, Stradi D, Wellendorff J, et al. First-principles Green’s-function method for surface calculations: A pseudopotential localized basis set approach. Phys Rev B 2017; 96: 195309. [Article] [Google Scholar]
  • Song JCW, Gabor NM. Electron quantum metamaterials in van der Waals heterostructures. Nat Nanotech 2018; 13: 986-993. [Article] [Google Scholar]
  • Tran K, Moody G, Wu F, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019; 567: 71-75. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yuan L, Zheng B, Kunstmann J, et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat Mater 2020; 19: 617-623. [Article] [Google Scholar]
  • Tartakovskii A. moiré or not. Nat Mater 2020; 19: 581-582. [Article] [Google Scholar]
  • Weston A, Zou Y, Enaldiev V, et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat Nanotechnol 2020; 15: 592-597. [Article] [Google Scholar]
  • Zhang S, Xu Q, Hou Y, et al. Domino-like stacking order switching in twisted monolayer-multilayer graphene. Nat Mater 2022; 21: 621-626. [Article] [Google Scholar]
  • Tao S, Zhang X, Zhu J, et al. Designing ultra-flat bands in twisted bilayer materials at large twist angles: theory and application to two-dimensional indium selenide. J Am Chem Soc 2022; 144: 3949-3956. [Article] [Google Scholar]
  • Guo H, Zhang X, Lu G. Shedding light on moiré excitons: A first-principles perspective. Sci Adv 2020; 6: eabc5638. [Article] [Google Scholar]
  • Wang H, Ma S, Zhang S, et al. Intrinsic superflat bands in general twisted bilayer systems. Light Sci Appl 2022; 11: 159. [Article] [Google Scholar]
  • Xiao Z, Shupeng S, Huiqi L, et al. First principles study on the electronic structure and optical properties of graphene/MoS2 heterojunctions with different rotation angles. Chin J High Press Phys 2024; 38: 052201 [Google Scholar]
  • Kim S, Ihm J, Choi HJ, et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys Rev Lett 2008; 100: 176802. [Article] [Google Scholar]
  • Kang J, Li J, Wu F, et al. Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J Phys Chem C 2011; 115: 20466-20470. [Article] [Google Scholar]
  • Naserian S, Izadyar M, Ranjbakhsh E. Theoretical design of Au–DPPh–Au molecular junction for use in organic field-effect transistors. J Phys Chem Solids 2023; 180: 111440. [Article] [Google Scholar]
  • Smidstrup S, Markussen T, Vancraeyveld P, et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J Phys-Condens Matter 2019; 32: 015901. [Article] [Google Scholar]
  • Zhou Y, Saad Y, Tiago ML, et al. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. Phys Rev E 2006; 74: 066704. [Article] [Google Scholar]
  • Liu D, Chen X, Hu Y, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun 2018; 9: 193. [Article] [Google Scholar]
  • Lin W, Li J, Wang W, et al. Electronic structure and band gap engineering of two-dimensional octagon-nitrogene. Sci Rep 2018; 8: 1674. [Article] [Google Scholar]
  • Hu C, Michaud-Rioux V, Kong X, et al. Dirac electrons in moiré superlattice: From two to three dimensions. Phys Rev Mater 2017; 1: 061003. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.