Issue
Natl Sci Open
Volume 4, Number 6, 2025
Special Topic: Artificial Intelligence and Energy Revolution
Article Number 20250039
Number of page(s) 5
Section Chemistry
DOI https://doi.org/10.1360/nso/20250039
Published online 18 November 2025
  • Gao Y, Yuan Y, Huang S, et al. A knowledge-data dual-driven framework for predicting the molecular properties of rechargeable battery electrolytes. Angew Chem Int Ed 2025; 64: e202416506. [Article] [Google Scholar]
  • You Q, Sun Y, Wang F, et al. Decoding the competing effects of dynamic solvation structures on nuclear magnetic resonance chemical shifts of battery electrolytes via machine learning. J Am Chem Soc 2025; 147: 14667-14676. [Article] [Google Scholar]
  • Liu H, Zheng H, Jia Z, et al. The CatMath: An online predictive platform for thermal + electrocatalysis. Front Chem Sci Eng 2023; 17: 2156-2160. [Article] [Google Scholar]
  • Jain A, Ong SP, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater 2013; 1: 011002. [Article] [Google Scholar]
  • Calderon CE, Plata JJ, Toher C, et al. The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 2015; 108: 233-238. [Article] [Google Scholar]
  • Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput Mater 2015; 1: 15010. [Article] [Google Scholar]
  • Chen X, Liu M, Yin S, et al. Uni-electrolyte: An artificial intelligence platform for designing electrolyte molecules for rechargeable batteries. Angew Chem Int Ed 2025; 64: e202503105. [Article] [Google Scholar]
  • Zhu Q, Zhang F, Huang Y, et al. An all-round AI-Chemist with a scientific mind. Natl Sci Rev 2022; 9: nwac190. [Article] [Google Scholar]
  • Szymanski NJ, Rendy B, Fei Y, et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023; 624: 86-91. [Article] [Google Scholar]
  • Dai T, Vijayakrishnan S, Szczypiński FT, et al. Autonomous mobile robots for exploratory synthetic chemistry. Nature 2024; 635: 890-897. [Article] [Google Scholar]
  • Olivetti EA, Cole JM, Kim E, et al. Data-driven materials research enabled by natural language processing and information extraction. Appl Phys Rev 2020; 7: 041317. [Article] [Google Scholar]
  • Zheng Z, Zhang O, Borgs C, et al. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J Am Chem Soc 2023; 145: 18048-18062. [Article] [Google Scholar]
  • Jiang J, Zhang R, Yuan Y, et al. NoiseMol: A noise-robusted data augmentation via perturbing noise for molecular property prediction. J Mol Graphics Model 2023; 121: 108454. [Article] [Google Scholar]
  • Ma B, Wei X, Liu C, et al. Data augmentation in microscopic images for material data mining. npj Comput Mater 2020; 6: 125. [Article] [Google Scholar]
  • Wang JY, Stevens JM, Kariofillis SK, et al. Identifying general reaction conditions by bandit optimization. Nature 2024; 626: 1025-1033. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.