Open Access
Review
| Issue |
Natl Sci Open
Volume 4, Number 6, 2025
|
|
|---|---|---|
| Article Number | 20250044 | |
| Number of page(s) | 19 | |
| Section | Materials Science | |
| DOI | https://doi.org/10.1360/nso/20250044 | |
| Published online | 14 October 2025 | |
- Yang Y, Liu C, Lv Z, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long‐lifespan and dendrite‐free Zn metal anodes. Adv Mater 2021; 33: 2007388. [Article] [Google Scholar]
- Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018; 17: 543-549. [Article] [Google Scholar]
- Liu Z, Yang Y, Liang S, et al. pH‐buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct 2021; 2: 2100119. [Article] [Google Scholar]
- Jin Y, Zou L, Liu L, et al. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv Mater 2019; 31: 1900567. [Article] [Google Scholar]
- Chao D, Zhu CR, Song M, et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv Mater 2018; 30: 1803181. [Article] [Google Scholar]
- Li Y, Huang Z, Kalambate PK, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 2019; 60: 752-759. [Article] [Google Scholar]
- Jin H, Li F, Gao J, et al. Additive‐free ultrastable hydrated vanadium oxide sol/carbon nanotube ink for durable and high‐power aqueous zinc‐ion battery. Adv Mater Inter 2022; 9: 2200174. [Article] [Google Scholar]
- Nai J, Lou XWD. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv Mater 2019; 31: 1706825. [Article] [Google Scholar]
- Yang Q, Mo F, Liu Z, et al. Activating C‐coordinated iron of iron hexacyanoferrate for Zn hybrid‐ion batteries with 10000‐cycle lifespan and superior rate capability. Adv Mater 2019; 31: 1901521. [Article] [Google Scholar]
- Fang G, Liang S, Chen Z, et al. Simultaneous cationic and anionic redox reactions mechanism enabling high‐rate long‐life aqueous zinc‐ion battery. Adv Funct Mater 2019; 29: 1905267. [Article] [Google Scholar]
- Ma L, Chen S, Li H, et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ Sci 2018; 11: 2521-2530. [Article] [Google Scholar]
- Zhang Q, Luan J, Tang Y, et al. Interfacial design of dendrite‐free zinc anodes for aqueous zinc‐ion batteries. Angew Chem Int Ed 2020; 59: 13180-13191. [Article] [Google Scholar]
- Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019; 62: 550-587. [Article] [Google Scholar]
- Du W, Ang EH, Yang Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci 2020; 13: 3330-3360. [Article] [Google Scholar]
- Cao Z, Zhuang P, Zhang X, et al. Strategies for dendrite‐free anode in aqueous rechargeable zinc ion batteries. Adv Energy Mater 2020; 10: 2001599. [Article] [Google Scholar]
- Cai Z, Wang J, Lu Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast‐charging Zn battery chemistry. Angew Chem Int Ed 2022; 61: e202116560. [Article] [Google Scholar]
- Rana A, Roy K, Heil JN, et al. Realizing the kinetic origin of hydrogen evolution for aqueous zinc metal batteries. Adv Energy Mater 2024; 14: 2402521. [Article] [Google Scholar]
- Chen X, Xie X, Ruan P, et al. Thermodynamics and kinetics of conversion reaction in zinc batteries. ACS Energy Lett 2024; 9: 2037-2056. [Article] [Google Scholar]
- Li Q, Wang Y, Mo F, et al. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv Energy Mater 2021; 11: 2003931. [Article] [Google Scholar]
- Zeng X, Mao J, Hao J, et al. Electrolyte design for in situ construction of highly Zn2+‐conductive solid electrolyte interphase to enable high‐performance aqueous Zn‐ion batteries under practical conditions. Adv Mater 2021; 33: 2007416. [Article] [Google Scholar]
- Jin H, Luo Y, Qi B, et al. Interfacial engineering regulates deposition kinetics of zinc metal anodes. ACS Appl Energy Mater 2021; 4: 11743-11751. [Article] [Google Scholar]
- Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule 2021; 5: 2845-2903. [Article] [Google Scholar]
- Bayaguud A, Fu Y, Zhu C. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J Energy Chem 2022; 64: 246-262. [Article] [Google Scholar]
- Dong N, Zhang F, Pan H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem Sci 2022; 13: 8243-8252. [Article] [Google Scholar]
- Guo X, Zhang S, Hong H, et al. Interface regulation and electrolyte design strategies for zinc anodes in high-performance zinc metal batteries. iScience 2025; 28: 111751. [Article] [Google Scholar]
- Yang Q, Liang G, Guo Y, et al. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in‐service batteries. Adv Mater 2019; 31: 1903778. [Article] [Google Scholar]
- Cogswell DA. Quantitative phase-field modeling of dendritic electrodeposition. Phys Rev E 2015; 92: 011301. [Article] [Google Scholar]
- Yang Q, Li Q, Liu Z, et al. Dendrites in Zn‐based batteries. Adv Mater 2020; 32: 2001854. [Article] [Google Scholar]
- Li Y, Wu P, Zhong W, et al. A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy Environ Sci 2021; 14: 5563-5571. [Article] [Google Scholar]
- Li B, Zhang X, Wang T, et al. Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett 2022; 14: 6. [Article] [Google Scholar]
- Du W, Huang S, Zhang Y, et al. Enable commercial Zinc powders for dendrite-free zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Mater 2022; 45: 465-473. [Article] [Google Scholar]
- Li H, Li S, Hou R, et al. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem Soc Rev 2024; 53: 7742-7783. [Article] [Google Scholar]
- Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite‐free Zn ion batteries achieved by a low‐cost glucose additive. Angew Chem 2021; 133: 18395-18403. [Article] [Google Scholar]
- Wang D, Lv D, Liu H, et al. In situ formation of nitrogen‐rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew Chem Int Ed 2022; 61: e202212839. [Article] [Google Scholar]
- Meng Y, Wang M, Wang J, et al. Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency. Nat Commun 2024; 15: 8431. [Article] [Google Scholar]
- Jin H, Dai S, Zhu Z, et al. Crystal water boosted Zn2+ transfer kinetics in artificial solid electrolyte interphase for high-rate and durable Zn anodes. ACS Appl Energy Mater 2022; 5: 10581-10590. [Article] [Google Scholar]
- Ma L, Li Q, Ying Y, et al. Toward practical high‐areal‐capacity aqueous zinc‐metal batteries: Quantifying hydrogen evolution and a solid‐ion conductor for stable zinc anodes. Adv Mater 2021; 33: 2007406. [Article] [Google Scholar]
- Yang N, Gao Y, Bu F, et al. Backside coating for stable Zn anode with high utilization rate. Adv Mater 2024; 36: 2312934. [Article] [Google Scholar]
- Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci 2019; 12: 1938-1949. [Article] [Google Scholar]
- Hao J, Li X, Zhang S, et al. Designing dendrite‐free zinc anodes for advanced aqueous zinc batteries. Adv Funct Mater 2020; 30: 2001263. [Article] [Google Scholar]
- Zhu M, Hu J, Lu Q, et al. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin‐mountable microbattery. Adv Mater 2021; 33: 2007497. [Article] [Google Scholar]
- Li Z, Deng W, Li C, et al. Uniformizing the electric field distribution and ion migration during zinc plating/stripping via a binary polymer blend artificial interphase. J Mater Chem A 2020; 8: 17725-17731. [Article] [Google Scholar]
- Cui Y, Zhao Q, Wu X, et al. An interface‐bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra‐long‐life aqueous zinc metal anodes. Angew Chem Int Ed 2020; 59: 16594-16601. [Article] [Google Scholar]
- Wang SB, Ran Q, Yao RQ, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat Commun 2020; 11: 1634. [Article] [Google Scholar]
- Yi Z, Chen G, Hou F, et al. Strategies for the stabilization of Zn metal anodes for Zn‐ion batteries. Adv Energy Mater 2021; 11: 2003065. [Article] [Google Scholar]
- Guo W, Cong Z, Guo Z, et al. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater 2020; 30: 104-112. [Article] [Google Scholar]
- Tian H, Li Z, Feng G, et al. Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat Commun 2021; 12: 237. [Article] [Google Scholar]
- Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019; 366: 645-648. [Article] [Google Scholar]
- Zhang J, Huang W, Li L, et al. Nonepitaxial electrodeposition of (002)‐textured Zn anode on textureless substrates for dendrite‐free and hydrogen evolution‐suppressed Zn batteries. Adv Mater 2023; 35: 2300073. [Article] [Google Scholar]
- Zeng Y, Zhang X, Qin R, et al. Dendrite‐free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn‐ion batteries. Adv Mater 2019; 31: 1903675. [Article] [Google Scholar]
- Fan X, Yang H, Wang X, et al. Enabling stable Zn anode via a facile alloying strategy and 3D foam structure. Adv Mater Inter 2021; 8: 2002184. [Article] [Google Scholar]
- Dong W, Shi JL, Wang TS, et al. 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO2 batteries. RSC Adv 2018; 8: 19157-19163. [Article] [Google Scholar]
- Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019; 13: 11676-11685. [Article] [Google Scholar]
- Zhang M, Yu P, Xiong K, et al. Construction of mixed ionic‐electronic conducting scaffolds in Zn powder: A scalable route to dendrite‐free and flexible Zn anodes. Adv Mater 2022; 34: 2200860. [Article] [Google Scholar]
- Hou Z, Tan H, Gao Y, et al. Tailoring desolvation kinetics enables stable zinc metal anodes. J Mater Chem A 2020; 8: 19367-19374. [Article] [Google Scholar]
- Ma L, Pollard TP, Zhang Y, et al. Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew Chem 2021; 133: 12546-12553. [Article] [Google Scholar]
- Wang M, Ma J, Meng Y, et al. High‐capacity zinc anode with 96 % utilization rate enabled by solvation structure design. Angew Chem Int Ed 2023; 62: e202214966. [Article] [Google Scholar]
- Zhu Z, Jin H, Xie K, et al. Molecular‐level Zn‐ion transfer pump specifically functioning on (002) facets enables durable Zn anodes. Small 2022; 18: 2204713. [Article] [Google Scholar]
- Zhao R, Wang H, Du H, et al. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat Commun 2022; 13: 3252. [Article] [Google Scholar]
- Huang C, Zhao X, Liu S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv Mater 2021; 33: 2100445. [Article] [Google Scholar]
- Liang G, Tang Z, Han B, et al. Regulating inorganic and organic components to build amorphous‐ZnFx enriched solid‐electrolyte interphase for highly reversible Zn metal chemistry. Adv Mater 2023; 35: 2210051. [Article] [Google Scholar]
- Luo J, Xu L, Zhou Y, et al. Regulating the inner helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn‐ion batteries. Angew Chem Int Ed 2023; 62: e202302302. [Article] [Google Scholar]
- Shao Y, Zhao J, Hu W, et al. Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn‐ion batteries. Small 2022; 18: 2107163. [Article] [Google Scholar]
- Han D, Cui C, Zhang K, et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat Sustain 2022; 5: 205-213. [Article] [Google Scholar]
- Li Z, Wang Z, Sun W, et al. Regulating interface engineering by helmholtz plane reconstructed achieves highly reversible zinc metal anodes. Adv Mater 2025; 37: 2420489. [Article] [Google Scholar]
- Feng D, Jiao Y, Wu P. Guiding Zn uniform deposition with polymer additives for long‐lasting and highly utilized Zn metal anodes. Angew Chem Int Ed 2023; 62: e202314456. [Article] [Google Scholar]
- Zhou K, Li Z, Qiu X, et al. Boosting Zn anode utilization by trace iodine ions in organic‐water hybrid electrolytes through formation of anion‐rich adsorbing layers. Angew Chem Int Ed 2023; 62: e202309594. [Article] [Google Scholar]
- Guan K, Chen W, Yang Y, et al. A dual salt/dual solvent electrolyte enables ultrahigh utilization of zinc metal anode for aqueous batteries. Adv Mater 2024; 36: 2405889. [Article] [Google Scholar]
- Wu C, Pan Y, Jiao Y, et al. α-Methyl group reinforced amphiphilic poly(ionic liquid) additive for high‐performance zinc-iodine batteries. Angew Chem Int Ed 2025; 64: e202423326. [Article] [Google Scholar]
- Wang M, Ma J, Meng Y, et al. In situ formation of solid electrolyte interphase facilitates anode-free aqueous zinc battery. eScience 2025; 5: 100397. [Article] [Google Scholar]
- Xu X, Feng X, Li M, et al. Overcoming challenges: Extending cycle life of aqueous zinc‐ion batteries at high zinc utilization through a synergistic strategy. Small 2024; 20: 2308273. [Article] [Google Scholar]
- Zhang Z, Wang X, Ke J, et al. Approaching 100% comprehensive utilization rate of ultra‐stable Zn metal anodes by constructing chitosan‐based homologous gel/solid synergistic interface. Adv Funct Mater 2024; 34: 2313150. [Article] [Google Scholar]
- Zhu Y, Li H, Sun X, et al. Minimizing Zn loss through dual regulation for reversible zinc anode beyond 90% utilization ratio. Small 2025; 21: 2411986. [Article] [Google Scholar]
- Yang W, Wu G, Zhu R, et al. Synergistic cation solvation reorganization and fluorinated interphase for high reversibility and utilization of zinc metal anode. ACS Nano 2023; 17: 25335-25347. [Article] [Google Scholar]
- Jiao Y, Li F, Jin X, et al. Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high‐performance Zn‐ion batteries. Adv Funct Mater 2021; 31: 2107652. [Article] [Google Scholar]
- Cao P, Zhou X, Wei A, et al. Fast‐charging and ultrahigh‐capacity zinc metal anode for high‐performance aqueous zinc‐ion batteries. Adv Funct Mater 2021; 31: 2100398. [Article] [Google Scholar]
- Lee D, Kim H, Kim W, et al. Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv Funct Mater 2021; 31: 2103850. [Article] [Google Scholar]
- Dong N, Zhao X, Yan M, et al. Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity. Nano Energy 2022; 104: 107903. [Article] [Google Scholar]
- Jin H, Dai S, Xie K, et al. Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80%. Small 2022; 18: 2106441. [Article] [Google Scholar]
- Zhao R, Yang Y, Liu G, et al. Redirected Zn electrodeposition by an anti‐corrosion elastic constraint for highly reversible Zn anodes. Adv Funct Mater 2021; 31: 2001867. [Article] [Google Scholar]
- Ling W, Nie C, Wu X, et al. Ion sieve interface assisted zinc anode with high zinc utilization and ultralong cycle life for 61 Wh/kg mild aqueous pouch battery. ACS Nano 2024; 18: 5003-5016. [Article] [Google Scholar]
- Yang C, Woottapanit P, Geng S, et al. Highly reversible Zn anode design through oriented ZnO(002) facets. Adv Mater 2024; 36: 2408908. [Article] [Google Scholar]
- Zhang L, Xiao J, Xiao X, et al. Molecular engineering of self-assembled monolayers for highly utilized Zn anodes. eScience 2024; 4: 100205. [Article] [Google Scholar]
- Duan F, Yin X, Ba J, et al. A hydrophobic and zincophilic interfacial nanofilm as a protective layer for stable Zn anodes. Adv Funct Mater 2024; 34: 2310342. [Article] [Google Scholar]
- Xiang Y, Zhong Y, tan P, et al. Thickness‐controlled synthesis of compact and uniform mof protective layer for zinc anode to achieve 85% zinc utilization. Small 2023; 19: 2302161. [Article] [Google Scholar]
- La S, Gao Y, Cao Q, et al. A thermal transfer-enhanced zinc anode for stable and high-energy-density zinc-ion batteries. Matter 2025; 8: 102013. [Article] [Google Scholar]
- Liang G, Zhu J, Yan B, et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ Sci 2022; 15: 1086-1096. [Article] [Google Scholar]
- Zheng Z, Zhong X, Zhang Q, et al. An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat Commun 2024; 15: 753. [Article] [Google Scholar]
- Xu W, Liao X, Xu W, et al. Ion selective and water resistant cellulose nanofiber/MXene membrane enabled cycling Zn anode at high currents. Adv Energy Mater 2023; 13: 2300283. [Article] [Google Scholar]
- Li J, Cheng Z, Li Z, et al. Rational design of zinc powder anode with high utilization and long cycle life for advanced aqueous Zn-S batteries. Mater Horiz 2023; 10: 2436-2444. [Article] [Google Scholar]
- Gao Y, Yang N, Bu F, et al. Double-sided engineering for space-confined reversible Zn anodes. Energy Environ Sci 2024; 17: 1894-1903. [Article] [Google Scholar]
- Zhou Y, Wang X, Shen X, et al. 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J Mater Chem A 2020; 8: 11719-11727. [Article] [Google Scholar]
- Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite‐free Zn anode for aqueous rechargeable batteries. Angew Chem 2021; 133: 7289-7295. [Article] [Google Scholar]
- Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019; 3: 1289-1300. [Article] [Google Scholar]
- Liu X, Yang F, Xu W, et al. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite‐free Zn anodes. Adv Sci 2020; 7: 2002173. [Article] [Google Scholar]
- Wang L, Huang W, Guo W, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv Funct Mater 2022; 32: 2108533. [Article] [Google Scholar]
- Wu S, Zhang S, Chu Y, et al. Stacked lamellar matrix enabling regulated deposition and superior thermo‐kinetics for advanced aqueous Zn‐ion system under practical conditions. Adv Funct Mater 2021; 31: 2107397. [Article] [Google Scholar]
- Zhang Q, Luan J, Fu L, et al. The three‐dimensional dendrite‐free zinc anode on a copper mesh with a zinc‐oriented polyacrylamide electrolyte additive. Angew Chem Int Ed 2019; 58: 15841-15847. [Article] [Google Scholar]
- Shi S, Zhou D, Jiang Y, et al. Lightweight Zn‐philic 3D‐Cu scaffold for customizable zinc ion batteries. Adv Funct Mater 2024; 34: 2312664. [Article] [Google Scholar]
- Li Q, Wang H, Yu H, et al. Engineering an ultrathin and hydrophobic composite zinc anode with 24 μm thickness for high‐performance Zn batteries. Adv Funct Mater 2023; 33: 2303466. [Article] [Google Scholar]
- Li J, Lin Q, Zheng Z, et al. How is cycle life of three-dimensional zinc metal anodes with carbon fiber backbones affected by depth of discharge and current density in zinc-ion batteries?. ACS Appl Mater Interfaces 2022; 14: 12323-12330. [Article] [Google Scholar]
- Wu B, Guo B, Chen Y, et al. High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy Storage Mater 2023; 54: 75-84. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
