Issue
Natl Sci Open
Volume 4, Number 6, 2025
Special Topic: Intelligent Materials and Devices
Article Number 20250046
Number of page(s) 14
Section Materials Science
DOI https://doi.org/10.1360/nso/20250046
Published online 29 October 2025
  • Cheng C, Liu J, Wang F, et al. Photonic structures in multispectral camouflage: From static to dynamic technologies. Mater Today 2025; 85: 253-281. [Article] [Google Scholar]
  • Wu Y, Tan S, Zhao Y, et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog Mater Sci 2023; 135: 101088. [Article] [Google Scholar]
  • Liu T, Guo C, Li W, et al. Thermal photonics with broken symmetries. eLight 2022; 2: 25. [Article] [Google Scholar]
  • Hu R, Xi W, Liu Y, et al. Thermal camouflaging metamaterials. Mater Today 2021; 45: 120-141. [Article] [Google Scholar]
  • Zhao T, Xie P, Wan H, et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat Photon 2023; 17: 622-628. [Article] [Google Scholar]
  • Ma D, Ji M, Yi H, et al. Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process. Nat Commun 2024; 15: 2248. [Article] [Google Scholar]
  • Ho-Baillie AWY, Sullivan HGJ, Bannerman TA, et al. Deployment opportunities for space photovoltaics and the prospects for perovskite solar cells. Adv Mater Technologies 2022; 7: 2101059. [Article] [Google Scholar]
  • Li Y, Li W, Han T, et al. Transforming heat transfer with thermal metamaterials and devices. Nat Rev Mater 2021; 6: 488-507. [Article] [Google Scholar]
  • Liu Y, Song J, Zhao W, et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics 2020; 9: 855-863. [Article] [Google Scholar]
  • Zhang J, Huang S, Hu R. Adaptive radiative thermal camouflage via synchronous heat conduction. Chin Phys Lett 2021; 38: 010502. [Article] [Google Scholar]
  • Wang J, Yu F, Chen J, et al. Continuous-spectrum-polarization recombinant optical encryption with a dielectric metasurface. Adv Mater 2023; 35: 2304161. [Article] [Google Scholar]
  • Chen Q, Huang X, Ju Z, et al. A triband metasurface covering visible, midwave infrared, and long-wave infrared for optical security. Nano Lett 2025; 25: 4459-4466. [Article] [Google Scholar]
  • Chandra S, Franklin D, Cozart J, et al. Adaptive multispectral infrared camouflage. ACS Photonics 2018; 5: 4513-4519. [Article] [Google Scholar]
  • Zhu R, Zhu H, Qin B, et al. Digital camouflage encompassing optical hyperspectra and thermal infrared-terahertz-microwave tri-bands. Nat Commun 2025; 16: 8112. [Article] [Google Scholar]
  • Xi W, Lee YJ, Yu S, et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat Commun 2023; 14: 4694. [Article] [Google Scholar]
  • Kumar N, Dixit A. Nanotechnology for Defence Applications. Singapore: Springer, 2019 [Google Scholar]
  • Huang Y, Zhu H, Zhou Y, et al. Adaptive visible-infrared camouflage with wide-range radiation control for extreme ambient temperatures. PhotoniX 2025; 6: 25. [Article] [Google Scholar]
  • Zhang L, Zhang C, Zhang L, et al. A dual-mode LiDAR system enabled by mechanically tunable hybrid cascaded metasurfaces. Light Sci Appl 2025; 14: 287. [Article] [Google Scholar]
  • Jiang X, Nong J, Li X, et al. Laser-adaptive inverse-design metamaterials for durable regulation from visible-infrared-lidar compatible camouflage to optical limiter. Laser Photo Rev 2025; e00883. [Google Scholar]
  • Kim T, Bae J, Lee N, et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Adv Funct Mater 2019; 29: 1807319. [Article] [Google Scholar]
  • Kim J, Park C, Hahn JW. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Adv Opt Mater 2022; 10: 2101930. [Article] [Google Scholar]
  • Ergoktas MS, Bakan G, Kovalska E, et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat Photon 2021; 15: 493-498. [Article] [Google Scholar]
  • Wei H, Gu J, Zhao T, et al. Tunable VO2 cavity enables multispectral manipulation from visible to microwave frequencies. Light Sci Appl 2024; 13: 54. [Article] [Google Scholar]
  • Jiang X, Wang X, Nong J, et al. Bicolor regulation of an ultrathin absorber in the mid-wave infrared and long-wave infrared regimes. ACS Photonics 2024; 11: 218-229. [Article] [Google Scholar]
  • Loke D, Lee TH, Wang WJ, et al. Breaking the speed limits of phase-change memory. Science 2012; 336: 1566-1569. [Article] [Google Scholar]
  • Amotchkina T, Trubetskov M, Hahner D, et al. Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl Opt 2019; 59: A40-7. [Article] [Google Scholar]
  • Jia Y, Liu D, Chen D, et al. Transparent dynamic infrared emissivity regulators. Nat Commun 2023; 14: 5087. [Article] [Google Scholar]
  • Wang S, Jiang T, Meng Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021; 374: 1501-1504. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Meng Z, Liu D, Pang Y, et al. Multispectral metal-based electro-optical metadevices with infrared reversible tunability and microwave scattering reduction. Nanophotonics 2024; 13: 3165-3174. [Article] [Google Scholar]
  • Xi W, Liu Y, Zhao W, et al. Colored radiative cooling: How to balance color display and radiative cooling performance. Int J Therm Sci 2021; 170: 107172. [Article] [Google Scholar]
  • Xie B, Liu Y, Xi W, et al. Colored radiative cooling: Progress and prospects. Mater Today Energy 2023; 34: 101302. [Article] [Google Scholar]
  • Huang J, Yang J, Chen D, et al. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials. Nanophotonics 2020; 9: 159-166. [Article] [Google Scholar]
  • Jackson JD. Classical Electrodynamics. New York: Wiley, 1999 [Google Scholar]
  • Yu J, Qin R, Ying Y, et al. Asymmetric directional control of thermal emission. Adv Mater 2023; 35: 2302478. [Article] [Google Scholar]
  • Heavens O. Thin-film optical filters. Optica Acta: Internat J Optics 1986; 33: 1336–1336 [Google Scholar]
  • Zhao J, Qiu M, Yu X, et al. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric fabry-perot lossy cavity. Adv Opt Mater 2019; 7: 1900646. [Article] [Google Scholar]
  • Xu Z, Luo H, Zhu H, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Lett 2021; 21: 5269-5276. [Article] [Google Scholar]
  • Jiang X, Zhang Z, Ma H, et al. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Opt Express 2022; 30: 18250. [Article] [Google Scholar]
  • Shportko K, Kremers S, Woda M, et al. Resonant bonding in crystalline phase-change materials. Nat Mater 2008; 7: 653-658. [Article] [Google Scholar]
  • Palik ED. Handbook of Optical Constants of Solids. Orlando: Academic Press, 1998 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.