Open Access
| Issue |
Natl Sci Open
Volume 4, Number 6, 2025
|
|
|---|---|---|
| Article Number | 20250056 | |
| Number of page(s) | 14 | |
| Section | Materials Science | |
| DOI | https://doi.org/10.1360/nso/20250056 | |
| Published online | 30 October 2025 | |
- Pop E, Sinha S, Goodson KE. Heat generation and transport in nanometer-scale transistors. Proc IEEE 2006; 94: 1587-1601. [Article] [Google Scholar]
- Ahmed HU, Faraj RH, Hilal N, et al. Use of recycled fibers in concrete composites: A systematic comprehensive review. Compos Part B-Eng 2021; 215: 108769. [Article] [Google Scholar]
- Okamoto H, Takahashi Y, Nakamura T, et al. Fresnoite-type Ba2TiGe2O8 glass-ceramics toward electro-optic device: Crystallization structure and Pockels effect. J Eur Ceramic Soc 2020; 40: 5576-5581. [Article] [Google Scholar]
- Cahill DG, Braun PV, Chen G, et al. Nanoscale thermal transport. II. 2003–2012. Appl Phys Rev 2014; 1: 011305 [Google Scholar]
- Lin S, Li W, Li S, et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule 2017; 1: 816-830. [Article] [Google Scholar]
- Acharyya P, Ghosh T, Pal K, et al. Intrinsically ultralow thermal conductivity in ruddlesden-popper 2D perovskite Cs2PbI2Cl2: Localized anharmonic vibrations and dynamic octahedral distortions. J Am Chem Soc 2020; 142: 15595-15603. [Article] [Google Scholar]
- Lee W, Li H, Wong AB, et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc Natl Acad Sci USA 2017; 114: 8693-8697. [Article] [Google Scholar]
- Jin H, Li J, Iocozzia J, et al. Hybrid organic-inorganic thermoelectric materials and devices. Angew Chem Int Ed 2019; 58: 15206-15226. [Article] [Google Scholar]
- Shi XL, Li NH, Li M, et al. Toward efficient thermoelectric materials and devices: Advances, challenges, and opportunities. Chem Rev 2025; 125: 7525-7724. [Article] [Google Scholar]
- Cao J, Xiong X, Zhou J. Two-dimensional lead-free mixed-halide perovskites with tunable optical properties. J Mater Chem C 2023; 11: 2764-2770. [Article] [Google Scholar]
- Bibi A, Lee I, Nah Y, et al. Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Mater Today 2021; 49: 123-144. [Article] [Google Scholar]
- Acharyya P, Ghosh T, Pal K, et al. Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal. Nat Commun 2022; 13: 5053. [Article] [Google Scholar]
- Bhui A, Ghosh T, Pal K, et al. Intrinsically low thermal conductivity in the n-type vacancy-ordered double perovskite Cs2SnI6: Octahedral rotation and anharmonic rattling. Chem Mater 2022; 34: 3301-3310. [Article] [Google Scholar]
- Chen Z, Liu W, Shan B, et al. Analytical approach to structural chemistry origins of mechanical, acoustical and thermal properties. Natl Sci Rev 2024; 11: nwae269. [Article] [Google Scholar]
- Acharyya P, Pal K, Ahad A, et al. Extended antibonding states and phonon localization induce ultralow thermal conductivity in low dimensional metal halide. Adv Funct Mater 2023; 33: 2304607. [Article] [Google Scholar]
- Geng H, Yao X, Tu X, et al. Photothermally enhanced photoresponse of bismuth halide perovskite by phonon scattering. ACS Appl Electron Mater 2022; 4: 217-224. [Article] [Google Scholar]
- Ma JJ, Zheng JJ, Chen Y, et al. Intrinsic ultralow lattice thermal conductivity in lead-free halide perovskites Cs3Bi2X9 (X = Br, I). Phys Chem Chem Phys 2024; 26: 21801-21809. [Article] [Google Scholar]
- Xiong W, Huang H, Wu Y, et al. Decoupling ultralow coherent and particle-like phonon transport via bonding hierarchy in soft superionic crystals. Adv Sci 2025; 12: e06807. [Article] [Google Scholar]
- Yue J, Zheng J, Li J, et al. Ultralow glassy thermal conductivity and controllable, promising thermoelectric properties in crystalline o-CsCu5S3. ACS Appl Mater Interfaces 2024; : acsami.4c02097. [Article] [Google Scholar]
- Shen X, Ouyang N, Huang Y, et al. Amorphous-like ultralow thermal transport in crystalline argyrodite Cu7PS6. Adv Sci 2024; 11: 2400258. [Article] [Google Scholar]
- Peierls R. Zur kinetischen Theorie der Wärmeleitung in Kristallen. Annalen der Physik 1929; 395: 1055-1101. [Article] [Google Scholar]
- Allen PB, Feldman JL. Thermal conductivity of disordered harmonic solids. Phys Rev B 1993; 48: 12581-12588. [Article] [Google Scholar]
- Phillips JC. Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J Non-Crystalline Solids 1979; 34: 153-181. [Article] [Google Scholar]
- Cahill DG, Pohl RO. Lattice vibrations and heat transport in crystals and glasses. Annu Rev Phys Chem 1988; 39: 93-121. [Article] [Google Scholar]
- Li F, Liu X, Yang J, et al. Long-range anion correlations mediating dynamic anharmonicity and contributing to glassy thermal conductivity in well-ordered K2Ag4Se3. Small 2025; 21: 2409524. [Article] [Google Scholar]
- Li Y, Li X, Wei B, et al. Phonon coherence in bismuth-halide perovskite Cs3Bi2Br9 with ultralow thermal conductivity. Adv Funct Mater 2024; 34: 2411152. [Article] [Google Scholar]
- Chen Y, Zhou Z, Zhang B, et al. Lattice overdamping induced anisotropy decoupling of phonon and carrier transports in quasi-1D KCu7S4 textured materials. Adv Funct Mater 2025; 35: 2503765. [Article] [Google Scholar]
- Arakcheeva AV, Bonin M, Chapuis G, et al. The phases of Cs3Bi2I9 between RT and 190 K. Zeitschrift fur Kristallographie - Crystalline Materials 1999; 214: 279283. [Google Scholar]
- Xu N, Qi X, Shen Z, et al. Point defects in metal halide perovskites. Nat Rev Phys 2025; 7: 554-564. [Article] [Google Scholar]
- Minns JL, Zajdel P, Chernyshov D, et al. Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide. Nat Commun 2017; 8: 15152. [Article] [Google Scholar]
- McCall KM, Stoumpos CC, Kostina SS, et al. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem Mater 2017; 29: 4129-4145. [Article] [Google Scholar]
- Lu H, Zhou C, Song Y, et al. A strategy to reduce thermal expansion and achieve higher mechanical properties in iron alloys. Nat Commun 2025; 16: 211. [Article] [Google Scholar]
- Brown SR, Kauzlarich SM, Gascoin F, et al. Yb14 MnSb11: New high efficiency thermoelectric material for power generation. Chem Mater 2006; 18: 1873-1877. [Article] [Google Scholar]
- Ren Q, Gupta MK, Jin M, et al. Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6. Nat Mater 2023; 22: 999-1006. [Article] [Google Scholar]
- Agne MT, Hanus R, Snyder GJ. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ Sci 2018; 11: 609-616. [Article] [Google Scholar]
- Mukhopadhyay S, Parker DS, Sales BC, et al. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4. Science 2018; 360: 1455-1458. [Article] [Google Scholar]
- Zhang X, Chen Z, Lin S, et al. Promising thermoelectric Ag5−δTe3 with intrinsic low lattice thermal conductivity. ACS Energy Lett 2017; 2: 2470-2477. [Article] [Google Scholar]
- Klarbring J, Hellman O, Abrikosov IA, et al. Anharmonicity and ultralow thermal conductivity in lead-free halide double perovskites. Phys Rev Lett 2020; 125: 045701. [Article] [Google Scholar]
- Das A, Pal K, Acharyya P, et al. Strong antibonding I (p)–Cu (d) states lead to intrinsically low thermal conductivity in CuBiI4. J Am Chem Soc 2023; 145: 1349-1358. [Article] [Google Scholar]
- Zeng Z, Chen C, Zhang C, et al. Critical phonon frequency renormalization and dual phonon coexistence in layered Ruddlesden-Popper inorganic perovskites. Phys Rev B 2022; 105: 184303. [Article] [Google Scholar]
- Li W, Lin S, Ge B, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Adv Sci 2016; 3: 1600196. [Article] [Google Scholar]
- Ma N, Zhang Z, Nan P, et al. Phonon symphony of stacked multilayers and weak bonds lowers lattice thermal conductivity. Adv Mater 2022; 34: 2202677. [Google Scholar]
- Wu L, Zhang X, Li C, et al. Thermal transport properties of polycrystalline Bi4SeCl2O4 with various texturizations and densities. Mater Today Phys 2025; 50: 101618. [Article] [Google Scholar]
- Lee H, Vashaee D, Wang DZ, et al. Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 2010; 107: 094308. [Article] [Google Scholar]
- Khan AU, Kobayashi K, Tang DM, et al. Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy 2017; 31: 152-159. [Article] [Google Scholar]
- Gu J, Yan G, Lian Y, et al. Bandgap engineering of a lead-free defect perovskite Cs3Bi2I9 through trivalent doping of Ru3+. RSC Adv 2018; 8: 25802-25807. [Article] [Google Scholar]
- Tang H, Wang X, Yao C, et al. 0D/3D heterostructure of perovskite Cs2CuBr4 quantum dots/Bi2O3 microflower as a step-scheme photocatalyst for enhanced CO2 reduction. Sep Purif Technol 2024; 338: 126544. [Article] [Google Scholar]
- Bai Y, Ye L, Wang L, et al. g-C3N4/Bi4O5I2 heterojunction with I3−/I− redox mediator for enhanced photocatalytic CO2 conversion. Appl Catal B-Environ 2016; 194: 98-104. [Article] [Google Scholar]
- Tan PH, Han WP, Zhao WJ, et al. The shear mode of multilayer graphene. Nat Mater 2012; 11: 294-300. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
