Open Access
Issue
Natl Sci Open
Volume 4, Number 6, 2025
Article Number 20250059
Number of page(s) 14
Section Information Sciences
DOI https://doi.org/10.1360/nso/20250059
Published online 06 November 2025
  • Kahng D, Sze SM. A floating gate and its application to memory devices. Bell Syst Tech J 1967; 46: 1288-1295. [Article] [Google Scholar]
  • IEEE. IRDSTM Roadmap. https://irds.ieee.org/editions [Google Scholar]
  • Bez R, Camerlenghi E, Modelli A, et al. Introduction to flash memory. Proc IEEE 2003; 91: 489-502. [Article] [Google Scholar]
  • Cho W, Jeong C, Kim J, et al. A 321-layer 2Tb 4b/cell 3D-NAND-flash memory with a 75MB/s program throughput. In: Proceedings of the 2025 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, 2025, 512–514 [Google Scholar]
  • Jung W, Kim H, Kim DB, et al. 13.3 A 280-layer 1Tb 4b/cell 3D-NAND flash memory with a 28.5Gb/mm2 areal density and a 3.2GB/s high-speed IO rate. In: Proceedings of the 2024 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, 2024, 236–237 [Google Scholar]
  • Lu CY. Future prospects of NAND flash memory technology—The evolution from floating gate to charge trapping to 3d stacking. J Nanosci Nanotech 2012; 12: 7604-7618. [Article] [Google Scholar]
  • Rajput R, Vaid R. Flash memory devices with metal floating gate/metal nanocrystals as the charge storage layer: A status review. Facta Univ Electron Energ 2020; 33: 155-167. [Article] [Google Scholar]
  • Jeong J, Song Y, Hahn SS, et al. Dynamic erase voltage and time scaling for extending lifetime of NAND flash-based SSDs. IEEE Trans Comput 2017; 66: 616-630. [Article] [Google Scholar]
  • Chen ML, Sun X, Liu H, et al. A FinFET with one atomic layer channel. Nat Commun 2020; 11: 1205. [Article] [Google Scholar]
  • Jiang J, Xu L, Qiu C, et al. Ballistic two-dimensional InSe transistors. Nature 2023; 616: 470-475. [Article] [Google Scholar]
  • Sup Choi M, Lee GH, Yu YJ, et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat Commun 2013; 4: 1624. [Article] [Google Scholar]
  • Desai SB, Madhvapathy SR, Sachid AB, et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016; 354: 99-102. [Article] [Google Scholar]
  • Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013; 7: 3246-3252. [Article] [Google Scholar]
  • Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech 2011; 6: 147-150. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wu F, Tian H, Shen Y, et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022; 603: 259-264. [Article] [Google Scholar]
  • Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013; 499: 419-425. [Article] [Google Scholar]
  • Liu Y, Weiss NO, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater 2016; 1: 16042. [Article] [Google Scholar]
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science 2016; 353: aac9439. [Article] [Google Scholar]
  • Wu L, Wang A, Shi J, et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat Nanotech 2021; 16: 882-887. [Article] [Google Scholar]
  • Liu L, Liu C, Jiang L, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat Nanotech 2021; 16: 874-881. [Article] [Google Scholar]
  • Huang X, Liu C, Tang Z, et al. An ultrafast bipolar flash memory for self-activated in-memory computing. Nat Nanotech 2023; 18: 486-492. [Article] [Google Scholar]
  • Jiang Y, Liu C, Cao Z, et al. A scalable integration process for ultrafast two-dimensional flash memory. Nat Electron 2024; 7: 868-875. [Article] [Google Scholar]
  • Lu H, Wang Y, Han X, et al. An ultrafast multibit memory based on the ReS2/h-BN/graphene heterostructure. ACS Nano 2024; 18: 23403-23411. [Article] [Google Scholar]
  • Wang H, Guo H, Guzman R, et al. Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv Mater 2024; 36: 2311652. [Article] [Google Scholar]
  • Liu Z, Lee C, Narayanan V, et al. Metal nanocrystal memories. I. Device design and fabrication. IEEE Trans Electron Devices 2002; 49: 1606-1613. [Article] [Google Scholar]
  • Wang J, Zou X, Xiao X, et al. Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 2015; 11: 208-213. [Article] [Google Scholar]
  • Lee C, Meteer J, Narayanan V, et al. Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications. J Elec Materi 2005; 34: 1-11. [Article] [Google Scholar]
  • Bach TPA, Cho S, Kim H, et al. 2D van der Waals heterostructure with tellurene floating-gate for wide range and multi-bit optoelectronic memory. ACS Nano 2024; 18: 4131-4139. [Article] [Google Scholar]
  • Shen PC, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021; 593: 211-217. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photon 2016; 10: 262-266. [Article] [Google Scholar]
  • Zhang C, Tu T, Wang J, et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat Mater 2023; 22: 832-837. [Article] [Google Scholar]
  • Migliato Marega G, Zhao Y, Avsar A, et al. Logic-in-memory based on an atomically thin semiconductor. Nature 2020; 587: 72-77. [Article] [Google Scholar]
  • Niu W, Zou X, Tang L, et al. Van der Waals gap enabled robust retention of MoS2 floating-gate memory for logic-in-memory operations. Adv Funct Mater 2025; 35: 2422120. [Article] [Google Scholar]
  • Kim YK, Park S, Choi J, et al. Low-power charge trap flash memory with MoS2 channel for high-density in-memory computing. Adv Funct Mater 2024; 34: 2405670. [Article] [Google Scholar]
  • Migliato Marega G, Ji HG, Wang Z, et al. A large-scale integrated vector-matrix multiplication processor based on monolayer molybdenum disulfide memories. Nat Electron 2023; 6: 991-998. [Article] [Google Scholar]
  • Migliato Marega G, Wang Z, Paliy M, et al. Low-power artificial neural network perceptron based on monolayer MoS2. ACS Nano 2022; 16: 3684-3694. [Article] [Google Scholar]
  • Cai Y, Yang J, Hou Y, et al. 8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks. Nat Commun 2025; 16: 2649. [Article] [Google Scholar]
  • Wang W, Jin J, Wang Y, et al. High-speed optoelectronic nonvolatile memory based on van der Waals heterostructures. Small 2023; 19: 2304730. [Article] [Google Scholar]
  • Zha J, Xia Y, Shi S, et al. A 2D heterostructure-based multifunctional floating gate memory device for multimodal reservoir computing. Adv Mater 2024; 36: 2308502. [Article] [Google Scholar]
  • Mukherjee B, Zulkefli A, Watanabe K, et al. Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene heterostructures. Adv Funct Mater 2020; 30: 2001688. [Article] [Google Scholar]
  • Liu C, Chen H, Hou X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotech 2019; 14: 662-667. [Article] [Google Scholar]
  • Liao J, Wen W, Wu J, et al. Van der Waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano 2023; 17: 6095-6102. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.