Issue
Natl Sci Open
Volume 4, Number 2, 2025
Special Topic: Flexible Electronics and Micro/Nanomanufacturing
Article Number 20230080
Number of page(s) 22
Section Engineering
DOI https://doi.org/10.1360/nso/20230080
Published online 05 March 2024
  • Johnson TJ, Ross D, Locascio LE. Rapid microfluidic mixing. Anal Chem 2002; 74: 45-51. [Article] [Google Scholar]
  • Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 2010; 39: 1203-1217. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 2008; 8: 2906-2912. [Article] [Google Scholar]
  • Ng AHC, Uddayasankar U, Wheeler AR. Immunoassays in microfluidic systems. Anal Bioanal Chem 2010; 397: 991-1007. [Article] [Google Scholar]
  • Chen X, Cui D, Liu C, et al. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal Chim Acta 2007; 584: 237-243. [Article] [Google Scholar]
  • Kumemura M, Collard D, Yamahata C, et al. Single DNA molecule isolation and trapping in a microfluidic device. ChemPhysChem 2007; 8: 1875-1880. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Autebert J, Coudert B, Bidard FC, et al. Microfluidic: An innovative tool for efficient cell sorting. Methods 2012; 57: 297-307. [Article] [PubMed] [Google Scholar]
  • Lee CY, Wang WT, Liu CC, et al. Passive mixers in microfluidic systems: A review. Chem Eng J 2016; 288: 146-160. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Amini H, Lee W, Di Carlo D. Inertial microfluidic physics. Lab Chip 2014; 14: 2739-2761. [Article] [Google Scholar]
  • Zhu P, Wang L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017; 17: 34-75. [Article] [Google Scholar]
  • Bayareh M. An updated review on particle separation in passive microfluidic devices. Chem Eng Process-Process Intensif 2020; 153: 107984. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Di Carlo D, Edd JF, Irimia D, et al. Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 2008; 80: 2204-2211. [Article] [Google Scholar]
  • Salafi T, Zhang Y, Zhang Y. A review on deterministic lateral displacement for particle separation and detection. Nano-Micro Lett 2019; 11: 1-33. [Article] [Google Scholar]
  • Hou HW, Bhagat AAS, Lee WC, et al. Microfluidic devices for blood fractionation. Micromachines 2011; 2: 319-343. [Article] [Google Scholar]
  • Nivedita N, Ligrani P, Papautsky I. Dean flow dynamics in low-aspect ratio spiral microchannels. Sci Rep 2017; 7: 44072. [Article] [Google Scholar]
  • Zhang J, Yan S, Yuan D, et al. Fundamentals and applications of inertial microfluidics: A review. Lab Chip 2016; 16: 10-34. [Article] [Google Scholar]
  • Martel JM, Toner M. Inertial focusing in microfluidics. Annu Rev Biomed Eng 2014; 16: 371-396. [Article] [Google Scholar]
  • Wang X, Chen S, Kong M, et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011; 11: 3656-3662. [Article] [Google Scholar]
  • Dorfman KD, King SB, Olson DW, et al. Beyond gel electrophoresis: Microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 2013; 113: 2584-2667. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Gijs MAM, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 2010; 110: 1518-1563. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Friend J, Yeo LY. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 2011; 83: 647-704. [Article] [Google Scholar]
  • Wu M, Ozcelik A, Rufo J, et al. Acoustofluidic separation of cells and particles. Microsyst Nanoeng 2019; 5: 32. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Rufo J, Cai F, Friend J, et al. Acoustofluidics for biomedical applications. Nat Rev Methods Primers 2022; 2: 30. [Article] [Google Scholar]
  • Wiklund M. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 2012; 12: 2018-2028. [Article] [Google Scholar]
  • Zhang P, Chen C, Guo F, et al. Contactless, programmable acoustofluidic manipulation of objects on water. Lab Chip 2019; 19: 3397-3404. [Article] [Google Scholar]
  • Chen C, Gu Y, Philippe J, et al. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat Commun 2021; 12: 1118. [Article] [Google Scholar]
  • Wang Z, Li F, Rufo J, et al. Acoustofluidic salivary exosome isolation. J Mol Diagnost 2020; 22: 50-59. [Article] [Google Scholar]
  • Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci USA 2017; 114: 10584-10589. [Article] [Google Scholar]
  • Gu Y, Chen C, Wang Z, et al. Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab Chip 2019; 19: 394-402. [Article] [Google Scholar]
  • Antfolk M, Magnusson C, Augustsson P, et al. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 2015; 87: 9322-9328. [Article] [Google Scholar]
  • Wang Z, Wang H, Becker R, et al. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsyst Nanoeng 2021; 7: 20. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Connacher W, Zhang N, Huang A, et al. Micro/nano acoustofluidics: Materials, phenomena, design, devices, and applications. Lab Chip 2018; 18: 1952-1996. [Article] [Google Scholar]
  • Li P, Huang TJ. Applications of acoustofluidics in bioanalytical chemistry. Anal Chem 2018; 91: 757-767. [Article] [Google Scholar]
  • Fakhfouri A, Devendran C, Albrecht T, et al. Surface acoustic wave diffraction driven mechanisms in microfluidic systems. Lab Chip 2018; 18: 2214-2224. [Article] [Google Scholar]
  • Zhang SP, Lata J, Chen C, et al. Digital acoustofluidics enables contactless and programmable liquid handling. Nat Commun 2018; 9: 2928. [Article] [Google Scholar]
  • Park J, Destgeer G, Afzal M, et al. Acoustofluidic generation of droplets with tunable chemical concentrations. Lab Chip 2020; 20: 3922-3929. [Article] [Google Scholar]
  • Duck FA. Radiation pressure and acoustic streaming. In: Ultrasound in Medicine. Boca Raton: CRC Press, 1998, 39-56 [Google Scholar]
  • Sadhal SS. Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods. Lab Chip 2012; 12: 2292-2300. [Article] [Google Scholar]
  • Bruus H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip 2012; 12: 1014-1021. [Article] [Google Scholar]
  • Wiklund M, Green R, Ohlin M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip 2012; 12: 2438-2451. [Article] [Google Scholar]
  • Ahmed D, Mao X, Shi J, et al. A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 2009; 9: 2738-2741. [Article] [Google Scholar]
  • Nama N, Huang PH, Huang TJ, et al. Investigation of acoustic streaming patterns around oscillating sharp edges. Lab Chip 2014; 14: 2824-2836. [Article] [Google Scholar]
  • Cai H, Ao Z, Wu Z, et al. Profiling cell-matrix adhesion using digitalized acoustic streaming. Anal Chem 2019; 92: 2283-2290. [Article] [Google Scholar]
  • Bruus H. Theoretical Microfluidics. Oxford: Oxford University Press, 2007 [Google Scholar]
  • Ding X, Li P, Lin SCS, et al. Surface acoustic wave microfluidics. Lab Chip 2013; 13: 3626-3649. [Article] [Google Scholar]
  • Bruus H. Acoustofluidics 2: Perturbation theory and ultrasound resonance modes. Lab Chip 2012; 12: 20-28. [Article] [Google Scholar]
  • Bremond N, Arora M, Ohl CD, et al. Controlled multibubble surface cavitation. Phys Rev Lett 2006; 96: 224501. [Article] [Google Scholar]
  • Costanzo F, Gray GL, Andia PC. On the definitions of effective stress and deformation gradient for use in MD: Hill’s macro-homogeneity and the virial theorem. Int J Eng Sci 2005; 43: 533-555. [Article] [Google Scholar]
  • Andia PC, Costanzo F, Gray GL. A Lagrangian-based continuum homogenization approach applicable to molecular dynamics simulations. Int J Solids Struct 2005; 42: 6409-6432. [Article] [Google Scholar]
  • Doinikov AA. Acoustic radiation forces: Classical theory and recent advances. In: Recent Research Developments in Acoustics. Trivandrum: Transworld Research Network, 2003 [Google Scholar]
  • Landau LD, Lifshitz EM. Course of Theoretical Physics. 3rd ed. Oxford: Elsevier, 2013 [Google Scholar]
  • Loudet JC, Hanusse P, Poulin P. Stokes drag on a sphere in a nematic liquid crystal. Science 2004; 306: 1525. [Article] [Google Scholar]
  • Destgeer G, Ha B, Park J, et al. Lamb wave-based acoustic radiation force-driven particle ring formation inside a sessile droplet. Anal Chem 2016; 88: 3976-3981. [Article] [Google Scholar]
  • Hagsäter SM, Jensen TG, Bruus H, et al. Acoustic resonances in microfluidic chips: Full-image micro-PIV experiments and numerical simulations. Lab Chip 2007; 7: 1336-1344. [Article] [Google Scholar]
  • Bora M, Shusteff M. Efficient coupling of acoustic modes in microfluidic channel devices. Lab Chip 2015; 15: 3192-3202. [Article] [Google Scholar]
  • Lenshof A, Evander M, Laurell T, et al. Acoustofluidics 5: Building microfluidic acoustic resonators. Lab Chip 2012; 12: 684-695. [Article] [Google Scholar]
  • Lenshof A, Magnusson C, Laurell T. Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab Chip 2012; 12: 1210-1223. [Article] [Google Scholar]
  • Yazdani AM, Şişman A. A novel numerical model to simulate acoustofluidic particle manipulation. Phys Scr 2020; 95: 095002. [Article] [Google Scholar]
  • Namnabat MS, Moghimi Zand M, Houshfar E. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics. Sci Rep 2021; 11: 13326. [Article] [Google Scholar]
  • Lei J, Cheng F, Li K, et al. Numerical simulation of continuous separation of microparticles in two-stage acousto-microfluidic systems. Appl Math Model 2020; 83: 342-356. [Article] [MathSciNet] [Google Scholar]
  • Liu P, Tian Z, Yang K, et al. Acoustofluidic black holes for multifunctional in-droplet particle manipulation. Sci Adv 2022; 8: eabm2592. [Article] [Google Scholar]
  • Maramizonouz S, Jia C, Rahmati M, et al. Acoustofluidic patterning inside capillary tubes using standing surface acoustic waves. Int J Mech Sci 2022; 214: 106893. [Article] [Google Scholar]
  • Gao Y, Wu M, Lin Y, et al. Acoustic microfluidic separation techniques and bioapplications: A review. Micromachines 2020; 11: 921. [Article] [PubMed] [Google Scholar]
  • Wu M, Chen K, Yang S, et al. High-throughput cell focusing and separation via acoustofluidic tweezers. Lab Chip 2018; 18: 3003-3010. [Article] [Google Scholar]
  • Xie Y, Mao Z, Bachman H, et al. Acoustic cell separation based on density and mechanical properties. J BioMech Eng 2020; 142: 031005. [Article] [PubMed] [Google Scholar]
  • Wu M, Chen C, Wang Z, et al. Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab Chip 2019; 19: 1174-1182. [Article] [Google Scholar]
  • Mao Z, Li P, Wu M, et al. Enriching nanoparticles via acoustofluidics. ACS Nano 2017; 11: 603-612. [Article] [Google Scholar]
  • Wu M, Huang P, Zhang R, et al. Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 2018; 14: 1801131. [Article] [PubMed] [Google Scholar]
  • Weser R, Winkler A, Weihnacht M, et al. The complexity of surface acoustic wave fields used for microfluidic applications. Ultrasonics 2020; 106: 106160. [Article] [Google Scholar]
  • Weser R, Darinskii AN, Weihnacht M, et al. Experimental and numerical investigations of mechanical displacements in surface acoustic wave bounded beams. Ultrasonics 2020; 106: 106077. [Article] [Google Scholar]
  • Fakhfouri A, Devendran C, Ahmed A, et al. The size dependant behaviour of particles driven by a travelling surface acoustic wave (TSAW). Lab Chip 2018; 18: 3926-3938. [Article] [Google Scholar]
  • Devendran C, Collins DJ, Neild A. The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices. Microfluid Nanofluid 2022; 26: 9. [Article] [Google Scholar]
  • Kolesnik K, Hashemzadeh P, Peng D, et al. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields. Phys Rev E 2021; 104: 045104. [Article] [Google Scholar]
  • Song S, Wang Q, Zhou J, et al. Design of interdigitated transducers for acoustofluidic applications. Nanotechnol Precision Eng 2022; 5: 035001. [Article] [Google Scholar]
  • Martin G, Chen D. Diffraction analysis of slanted-finger interdigital transducers. IEEE Trans Microwave Theor Techn 2001; 49: 838-843. [Article] [NASA ADS] [Google Scholar]
  • Zhao S, Wu M, Yang S, et al. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab Chip 2020; 20: 1298-1308. [Article] [Google Scholar]
  • He C, Ni X, Ge H, et al. Acoustic topological insulator and robust one-way sound transport. Nat Phys 2016; 12: 1124-1129. [Article]arxiv:1512.03273 [Google Scholar]
  • Xia JP, Jia D, Sun HX, et al. Programmable coding acoustic topological insulator. Adv Mater 2018; 30: 1805002. [Article] [PubMed] [Google Scholar]
  • Mamishev AV, Sundara-Rajan K, Fumin Yang K, et al. Interdigital sensors and transducers. Proc IEEE 2004; 92: 808-845. [Article] [Google Scholar]
  • Shi J, Ahmed D, Mao X, et al. Acoustic tweezers: Patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 2009; 9: 2890-2895. [Article] [Google Scholar]
  • Tian Z, Yang S, Huang PH, et al. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci Adv 2019; 5: eaau6062. [Article] [Google Scholar]
  • Kang P, Tian Z, Yang S, et al. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects. Lab Chip 2020; 20: 987-994. [Article] [Google Scholar]
  • Ding X, Lin SCS, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci USA 2012; 109: 11105-11109. [Article] [Google Scholar]
  • Yang S, Tian Z, Wang Z, et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat Mater 2022; 21: 540-546. [Article] [Google Scholar]
  • Ao Z, Cai H, Wu Z, et al. Controllable fusion of human brain organoids using acoustofluidics. Lab Chip 2021; 21: 688-699. [Article] [Google Scholar]
  • Wu Z, Chen B, Wu Y, et al. Scaffold-free generation of heterotypic cell spheroids using acoustofluidics. Lab Chip 2021; 21: 3498-3508. [Article] [Google Scholar]
  • Wu Y, Zhao Y, Islam K, et al. Acoustofluidic engineering of functional vessel-on-a-chip. ACS BioMater Sci Eng 2023; 9: 6273-6281. [Article] [Google Scholar]
  • Jeger-Madiot N, Arakelian L, Setterblad N, et al. Self-organization and culture of Mesenchymal Stem Cell spheroids in acoustic levitation. Sci Rep 2021; 11: 8355. [Article] [Google Scholar]
  • Wu Z, Ao Z, Cai H, et al. Acoustofluidic assembly of primary tumor-derived organotypic cell clusters for rapid evaluation of cancer immunotherapy. J Nanobiotechnol 2023; 21: 40. [Article] [Google Scholar]
  • Cai H, Ao Z, Hu L, et al. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer’s disease. Analyst 2020; 145: 6243-6253. [Article] [Google Scholar]
  • Boluriaan S, Morris PJ. Acoustic streaming: From rayleigh to today. Int J Aeroacoust 2003; 2: 255-292. [Article] [Google Scholar]
  • Wei W, Wang Y, Wang Z, et al. Microscale acoustic streaming for biomedical and bioanalytical applications. TrAC Trends Anal Chem 2023; 160: 116958. [Article] [Google Scholar]
  • Wu J. Acoustic streaming and its applications. Fluids 2018; 3: 108. [Article] [Google Scholar]
  • Zhang P, Chen C, Su X, et al. Acoustic streaming vortices enable contactless, digital control of droplets. Sci Adv 2020; 6: eaba0606. [Article] [Google Scholar]
  • Zhu H, Zhang P, Zhong Z, et al. Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices. Sci Adv 2021; 7: eabc7885. [Article] [Google Scholar]
  • Draz MS, Dupouy D, Gijs MAM. Acoustofluidic large-scale mixing for enhanced microfluidic immunostaining for tissue diagnostics. Lab Chip 2023; 23: 3258-3271. [Article] [Google Scholar]
  • O’Rorke R, Winkler A, Collins D, et al. Slowness curve surface acoustic wave transducers for optimized acoustic streaming. RSC Adv 2020; 10: 11582-11589. [Article] [Google Scholar]
  • Collins DJ, Ma Z, Han J, et al. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Lab Chip 2017; 17: 91-103. [Article] [Google Scholar]
  • Yang Y, Pang W, Zhang H, et al. Manipulation of single cells via a stereo acoustic streaming tunnel (SteAST). Microsyst Nanoeng 2022; 8: 88. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Hildebrand BP. An Introduction to Acoustical Holography. New York: Springer Science & Business Media, 2013 [Google Scholar]
  • Melde K, Mark AG, Qiu T, et al. Holograms for acoustics. Nature 2016; 537: 518-522. [Article] [Google Scholar]
  • Ma Z, Holle AW, Melde K, et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater 2020; 32: 1904181. [Article] [PubMed] [Google Scholar]
  • Li J, Crivoi A, Peng X, et al. Three dimensional acoustic tweezers with vortex streaming. Commun Phys 2021; 4: 113. [Article] [NASA ADS] [Google Scholar]
  • Durrer J, Agrawal P, Ozgul A, et al. A robot-assisted acoustofluidic end effector. Nat Commun 2022; 13: 6370. [Article] [Google Scholar]
  • Yiannacou K, Sariola V. Controlled manipulation and active sorting of particles inside microfluidic chips using bulk acoustic waves and machine learning. Langmuir 2021; 37: 4192-4199. [Article] [Google Scholar]
  • Teh SY, Lin R, Hung LH, et al. Droplet microfluidics. Lab Chip 2008; 8: 198-220. [Article] [Google Scholar]
  • Chou WL, Lee PY, Yang CL, et al. Recent advances in applications of droplet microfluidics. Micromachines 2015; 6: 1249-1271. [Article] [Google Scholar]
  • Guo MT, Rotem A, Heyman JA, et al. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012; 12: 2146-2155. [Article] [Google Scholar]
  • Zhu Z, Jenkins G, Zhang W, et al. Single-molecule emulsion PCR in microfluidic droplets. Anal Bioanal Chem 2012; 403: 2127-2143. [Article] [Google Scholar]
  • Rakszewska A, Tel J, Chokkalingam V, et al. One drop at a time: Toward droplet microfluidics as a versatile tool for single-cell analysis. NPG Asia Mater 2014; 6: e133. [Article] [Google Scholar]
  • Byrnes SA, Chang TC, Huynh T, et al. Simple polydisperse droplet emulsion polymerase chain reaction with statistical volumetric correction compared with microfluidic droplet digital polymerase chain reaction. Anal Chem 2018; 90: 9374-9380. [Article] [Google Scholar]
  • Terekhov SS, Smirnov IV, Stepanova AV, et al. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc Natl Acad Sci USA 2017; 114: 2550-2555. [Article] [Google Scholar]
  • Baumgartner LM, Coley CW, Reizman BJ, et al. Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform. React Chem Eng 2018; 3: 301-311. [Article] [Google Scholar]
  • Li S, Ding X, Guo F, et al. An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal Chem 2013; 85: 5468-5474. [Article] [Google Scholar]
  • Lee C, Lee J, Kim HH, et al. Microfluidic droplet sorting with a high frequency ultrasound beam. Lab Chip 2012; 12: 2736-2742. [Article] [Google Scholar]
  • Qin X, Wei X, Li L, et al. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 2021; 21: 3165-3173. [Article] [Google Scholar]
  • Baret JC. Surfactants in droplet-based microfluidics. Lab Chip 2012; 12: 422-433. [Article] [Google Scholar]
  • Mazutis L, Griffiths AD. Selective droplet coalescence using microfluidic systems. Lab Chip 2012; 12: 1800-1806. [Article] [Google Scholar]
  • Rhee M, Light YK, Yilmaz S, et al. Pressure stabilizer for reproducible picoinjection in droplet microfluidic systems. Lab Chip 2014; 14: 4533-4539. [Article] [Google Scholar]
  • Park J, Jung JH, Park K, et al. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip. Lab Chip 2018; 18: 422-432. [Article] [Google Scholar]
  • Sesen M, Alan T, Neild A. Microfluidic on-demand droplet merging using surface acoustic waves. Lab Chip 2014; 14: 3325-3333. [Article] [Google Scholar]
  • Mutafopulos K, Lu PJ, Garry R, et al. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. Lab Chip 2020; 20: 3914-3921. [Article] [Google Scholar]
  • Zhang P, Wang W, Fu H, et al. Deterministic droplet coding via acoustofluidics. Lab Chip 2020; 20: 4466-4473. [Article] [Google Scholar]
  • Bussiere V, Vigne A, Link A, et al. High-throughput triggered merging of surfactant-stabilized droplet pairs using traveling surface acoustic waves. Anal Chem 2019; 91: 13978-13985. [Article] [Google Scholar]
  • Sesen M, Fakhfouri A, Neild A. Coalescence of surfactant-stabilized adjacent droplets using surface acoustic waves. Anal Chem 2019; 91: 7538-7545. [Article] [Google Scholar]
  • Fornell A, Cushing K, Nilsson J, et al. Binary particle separation in droplet microfluidics using acoustophoresis. Appl Phys Lett 2018; 112: 063701. [Article] [Google Scholar]
  • Duncanson WJ, Arriaga LR, Ung WL, et al. Microfluidic fabrication of perfluorohexane-shelled double emulsions for controlled loading and acoustic-triggered release of hydrophilic agents. Langmuir 2014; 30: 13765-13770. [Article] [Google Scholar]
  • Park J, Destgeer G, Kim H, et al. In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force. Lab Chip 2018; 18: 2936-2945. [Article] [Google Scholar]
  • Fornell A, Pohlit H, Shi Q, et al. Acoustic focusing of beads and cells in hydrogel droplets. Sci Rep 2021; 11: 7479. [Article] [Google Scholar]
  • Gu Y, Chen C, Rufo J, et al. Acoustofluidic holography for micro- to nanoscale particle manipulation. ACS Nano 2020; 14: 14635-14645. [Article] [Google Scholar]
  • Zhang J, Chen C, Becker R, et al. A solution to the biophysical fractionation of extracellular vesicles: Acoustic nanoscale separation via wave-pillar excitation resonance (ANSWER). Sci Adv 2022; 8: eade0640. [Article] [Google Scholar]
  • McGrath J, Jimenez M, Bridle H. Deterministic lateral displacement for particle separation: A review. Lab Chip 2014; 14: 4139-4158. [Article] [Google Scholar]
  • Gu Y, Chen C, Mao Z, et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci Adv 2021; 7: eabc0467. [Article] [Google Scholar]
  • Destgeer G, Cho H, Ha BH, et al. Acoustofluidic particle manipulation inside a sessile droplet: Four distinct regimes of particle concentration. Lab Chip 2016; 16: 660-667. [Article] [Google Scholar]
  • Wu D, Baresch D, Cook C, et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci Adv 2023; 9: eadd9186. [Article] [Google Scholar]
  • Fu Q, Zhang Y, Huang T, et al. Measurement of cell compressibility changes during epithelial-mesenchymal transition based on acoustofluidic microdevice. Biomicrofluidics 2021; 15: 064101. [Article] [Google Scholar]
  • He Y, Yang S, Liu P, et al. Acoustofluidic interfaces for the mechanobiological secretome of MSCs. Nat Commun 2023; 14: 7639. [Article] [Google Scholar]
  • Richard C, Devendran C, Ashtiani D, et al. Acoustofluidic cell micro-dispenser for single cell trajectory control. Lab Chip 2022; 22: 3533-3544. [Article] [Google Scholar]
  • Kim S, Nam H, Cha B, et al. Acoustofluidic stimulation of functional immune cells in a microreactor. Adv Sci 2022; 9: 2105809. [Article] [CrossRef] [Google Scholar]
  • Salari A, Appak-Baskoy S, Coe IR, et al. Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications. Lab Chip 2021; 21: 1788-1797. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.