Issue |
Natl Sci Open
Volume 4, Number 2, 2025
Special Topic: Flexible Electronics and Micro/Nanomanufacturing
|
|
---|---|---|
Article Number | 20240013 | |
Number of page(s) | 23 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20240013 | |
Published online | 06 June 2024 |
- Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016; 536: 451-455. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tolley MT, Shepherd RF, Mosadegh B, et al. A resilient, untethered soft robot. Soft Robotics 2014; 1: 213-223. [Article] [Google Scholar]
- Li G, Chen X, Zhou F, et al. Self-powered soft robot in the Mariana Trench. Nature 2021; 591: 66-71. [Article] [Google Scholar]
- Sinatra NR, Teeple CB, Vogt DM, et al. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci Robot 2019; 4: eaax5425. [Article] [Google Scholar]
- Li M, Pal A, Aghakhani A, et al. Soft actuators for real-world applications. Nat Rev Mater 2022; 7: 235-249. [Article] [Google Scholar]
- Pelrine R, Kornbluh R, Kofod G. High-strain actuator materials based on dielectric elastomers. Adv Mater 2000; 12: 1223-1225. [Article] [NASA ADS] [Google Scholar]
- Shi Y, Askounis E, Plamthottam R, et al. A processable, high-performance dielectric elastomer and multilayering process. Science 2022; 377: 228-232. [Article] [Google Scholar]
- Xie T. Tunable polymer multi-shape memory effect. Nature 2010, 464: 267-270 [CrossRef] [Google Scholar]
- Luo L, Zhang F, Wang L, et al. Recent advances in shape memory polymers: Multifunctional materials, multiscale structures, and applications. Adv Funct Mater 2023; 34: 2312036. [Article] [Google Scholar]
- Kim Y, Yuk H, Zhao R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018; 558: 274-279. [Article] [Google Scholar]
- Kim Y, Parada GA, Liu S, et al. Ferromagnetic soft continuum robots. Sci Robot 2019; 4: eaax7329. [Article] [Google Scholar]
- Zhao Y, Xuan C, Qian X, et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci Robot 2019; 4: eaax7112. [Article] [Google Scholar]
- Qian X, Zhao Y, Alsaid Y, et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat Nanotechnol 2019; 14: 1048-1055. [Article] [Google Scholar]
- Lo CY, Zhao Y, Kim C, et al. Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater Today 2021; 50: 35-43. [Article] [Google Scholar]
- Wang Z, He Q, Wang Y, et al. Programmable actuation of liquid crystal elastomers via “living” exchange reaction. Soft Matter 2019; 15: 2811-2816. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- He Q, Yin R, Hua Y, et al. A modular strategy for distributed, embodied control of electronics-free soft robots. Sci Adv 2023; 9: eade9247. [Article] [Google Scholar]
- Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater 2010; 22: 3366-3387. [Article] [NASA ADS] [PubMed] [Google Scholar]
- Herbert KM, Fowler HE, McCracken JM, et al. Synthesis and alignment of liquid crystalline elastomers. Nat Rev Mater 2022; 7: 23-38. [Article] [Google Scholar]
- Mistry D, Traugutt NA, Yu K, et al. Processing and reprocessing liquid crystal elastomer actuators. J Appl Phys 2021; 129: 130901. [Article] [Google Scholar]
- Maurin V, Chang Y, Ze Q, et al. Liquid crystal elastomer–liquid metal composite: Ultrafast, untethered, and programmable actuation by induction heating. Adv Mater 2023; 36: 2302765. [Article] [Google Scholar]
- Lan R, Shen W, Yao W, et al. Bioinspired humidity-responsive liquid crystalline materials: From adaptive soft actuators to visualized sensors and detectors. Mater Horiz 2023; 10: 2824-2844. [Article] [Google Scholar]
- McBride MK, Martinez AM, Cox L, et al. A readily programmable, fully reversible shape-switching material. Sci Adv 2018; 4: eaat4634. [Article] [Google Scholar]
- White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 2015; 14: 1087-1098. [Article] [Google Scholar]
- Xiao Y, Wu J, Zhang Y. Recent advances in the design, fabrication, actuation mechanisms and applications of liquid crystal elastomers. Soft Sci 2023; 3: 11. [Article] [Google Scholar]
- Nie ZZ, Wang M, Yang H. Structure-induced intelligence of liquid crystal elastomers. Chem Eur J 2023, 29: e202301027 [CrossRef] [PubMed] [Google Scholar]
- Rich SI, Wood RJ, Majidi C. Untethered soft robotics. Nat Electron 2018; 1: 102-112. [Article] [Google Scholar]
- Zhai Y, Wang Z, Kwon KS et al. Printing multi-material organic haptic actuators. Adv Mater 2021, 33: 2002541 [PubMed] [Google Scholar]
- Won P, Kim KK, Kim H, et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv Mater 2021; 33: 2002397. [Article] [PubMed] [Google Scholar]
- Pang W, Xu S, Liu L, et al. Thin-film-shaped flexible actuators. Adv Intelligent Syst 2023; 5: 2300060. [Article] [Google Scholar]
- Qu J, Xu Y, Li Z, et al. Recent advances on underwater soft robots. Adv Intelligent Syst 2024; 6: 2300299. [Article] [Google Scholar]
- Leanza S, Wu S, Sun X, et al. Active materials for functional origami. Adv Mater 2024; 36: 2302066. [Article] [Google Scholar]
- Wang Z, Cai S. Recent progress in dynamic covalent chemistries for liquid crystal elastomers. J Mater Chem B 2020; 8: 6610-6623. [Article] [Google Scholar]
- Zeng H, Wani OM, Wasylczyk P, et al. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv Mater 2017; 29: 1701814. [Article] [PubMed] [Google Scholar]
- Aharoni H, Xia Y, Zhang X, et al. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc Natl Acad Sci USA 2018; 115: 7206-7211. [Article]arxiv:1710.08485 [Google Scholar]
- Cui J, Drotlef DM, Larraza I, et al. Bioinspired actuated adhesive patterns of liquid crystalline elastomers. Adv Mater 2012; 24: 4601-4604. [Article] [NASA ADS] [PubMed] [Google Scholar]
- Küpfer J, Finkelmann H. Nematic liquid single crystal elastomers. Makromol Chem Rapid Commun 1991, 12: 717-726 [Google Scholar]
- Yakacki CM, Saed M, Nair DP, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv 2015; 5: 18997-19001. [Article] [Google Scholar]
- Wang Z, Guo Y, Cai S, et al. Three-dimensional printing of liquid crystal elastomers and their applications. ACS Appl Polym Mater 2022; 4: 3153-3168. [Article] [Google Scholar]
- Chen M, Hou Y, An R, et al. 4D Printing of reprogrammable liquid crystal elastomers with synergistic photochromism and photoactuation. Adv Mater 2023; 36: 2303969. [Article] [Google Scholar]
- Mistry D, Traugutt NA, Sanborn B, et al. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers. Nat Commun 2021; 12: 6677. [Article]arxiv:2106.02165 [Google Scholar]
- Kotikian A, Truby RL, Boley JW, et al. 3D Printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater 2018; 30: 1706164. [Article] [PubMed] [Google Scholar]
- Kotikian A, Watkins AA, Bordiga G, et al. Liquid crystal elastomer lattices with thermally programmable deformation via multi-material 3D printing. Adv Mater 2024; 36: 2310743. [Article] [Google Scholar]
- Saed MO, Ambulo CP, Kim H, et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv Funct Mater 2019; 29: 1806412. [Article] [Google Scholar]
- Wang Y, Guan Q, Lei D, et al. Meniscus-climbing system inspired 3D printed fully soft robotics with highly flexible three-dimensional locomotion at the liquid–air interface. ACS Nano 2022; 16: 19393-19402. [Article] [Google Scholar]
- Wang Y, Yin R, Jin L, et al. 3D-Printed photoresponsive liquid crystal elastomer composites for free-form actuation. Adv Funct Mater 2023; 33: 2210614. [Article] [Google Scholar]
- Sun Y, Wang L, Zhu Z, et al. A 3D-printed ferromagnetic liquid crystal elastomer with programmed dual-anisotropy and multi-responsiveness. Adv Mater 2023; 35: 2302824. [Article] [Google Scholar]
- Chen M, Gao M, Bai L, et al. Recent advances in 4D printing of liquid crystal elastomers. Adv Mater 2023; 35: 2209566. [Article] [Google Scholar]
- Wang Z, Wang Z, Zheng Y, et al. Three-dimensional printing of functionally graded liquid crystal elastomer. Sci Adv 2020; 6: eabc0034. [Article] [Google Scholar]
- Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater 2014, 13: 36-41 [Google Scholar]
- Saed MO, Gablier A, Terentjev EM. Exchangeable liquid crystalline elastomers and their applications. Chem Rev 2022; 122: 4927-4945. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Xu Z, Wu F, et al. Liquid-crystal elastomers based on covalent adaptable networks: From molecular design to applications. Sci China Mater 2023; 66: 3004-3021. [Article] [Google Scholar]
- Yang Y, Terentjev EM, Zhang Y, et al. Reprocessable thermoset soft actuators. Angew Chem Int Ed 2019; 58: 17474-17479. [Article] [Google Scholar]
- Yao Y, He E, Xu H, et al. Enabling liquid crystal elastomers with tunable actuation temperature. Nat Commun 2023; 14: 3518. [Article] [Google Scholar]
- Liu Y, Wu Y, Liang H, et al. Rewritable electrically controllable liquid crystal actuators. Adv Funct Mater 2023; 33: 2302110. [Article] [Google Scholar]
- Liang H, Zhang S, Liu Y, et al. Merging the interfaces of different shape-shifting polymers using hybrid exchange reactions. Adv Mater 2023; 35: 2202462. [Article] [Google Scholar]
- Pei Z, Yang Y, Chen Q, et al. Regional shape control of strategically assembled multishape memory vitrimers. Adv Mater 2016; 28: 156-160. [Article] [NASA ADS] [PubMed] [Google Scholar]
- Yao Y, He E, Xu H, et al. Fabricating liquid crystal vitrimer actuators far below the normal processing temperature. Mater Horiz 2023; 10: 1795-1805. [Article] [Google Scholar]
- Wang Z, Tian H, He Q, et al. Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds. ACS Appl Mater Interfaces 2017; 9: 33119-33128. [Article] [Google Scholar]
- Wang Y, Wang Z, He Q, et al. Electrically controlled soft actuators with multiple and reprogrammable actuation modes. Adv Intelligent Syst 2020; 2: 1900177. [Article] [Google Scholar]
- Saed MO, Gablier A, Terentejv EM. Liquid crystalline vitrimers with full or partial boronic-ester bond exchange. Adv Funct Mater 2020; 30: 1906458. [Article] [Google Scholar]
- Ma J, Yang Y, Valenzuela C, et al. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew Chem Int Ed 2022; 61: e202116219. [Article] [Google Scholar]
- Jiang ZC, Xiao YY, Yin L, et al. “Self-lockable” liquid crystalline Diels-Alder dynamic network actuators with room temperature programmability and solution reprocessability. Angew Chem Int Ed 2020; 59: 4925-4931. [Article] [Google Scholar]
- Chen L, Bisoyi HK, Huang Y, et al. Healable and rearrangeable networks of liquid crystal elastomers enabled by diselenide bonds. Angew Chem Int Ed 2021; 60: 16394-16398. [Article] [Google Scholar]
- Lv J, Wang W, Xu J, et al. Photoinduced bending behavior of cross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone. Macromol Rapid Commun 2014; 35: 1266-1272. [Article] [Google Scholar]
- Wani OM, Zeng H, Priimagi A. A light-driven artificial flytrap. Nat Commun 2017; 8: 15546. [Article] [Google Scholar]
- Gelebart AH, Jan Mulder D, Varga M, et al. Making waves in a photoactive polymer film. Nature 2017; 546: 632-636. [Article] [Google Scholar]
- Ceamanos L, Kahveci Z, López-Valdeolivas M, et al. Four-dimensional printed liquid crystalline elastomer actuators with fast photoinduced mechanical response toward light-driven robotic functions. ACS Appl Mater Interfaces 2020; 12: 44195-44204. [Article] [CrossRef] [PubMed] [Google Scholar]
- Qian X, Chen Q, Yang Y, et al. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Adv Mater 2018; 30: 1801103. [Article] [Google Scholar]
- Feng W, He Q, Zhang L. Embedded physical intelligence in liquid crystalline polymer actuators and robots. Adv Mater 2024; 36: 2312313. [Article] [Google Scholar]
- Ahn C, Li K, Cai S. Light or thermally powered autonomous rolling of an elastomer rod. ACS Appl Mater Interfaces 2018; 10: 25689-25696. [Article] [Google Scholar]
- Zhao Y, Hong Y, Li Y, et al. Physically intelligent autonomous soft robotic maze escaper. Sci Adv 2023; 9: eadi3254. [Article] [Google Scholar]
- Zhao Y, Chi Y, Hong Y, et al. Twisting for soft intelligent autonomous robot in unstructured environments. Proc Natl Acad Sci USA 2022; 119: e2200265119. [Article] [Google Scholar]
- Kotikian A, McMahan C, Davidson EC, et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci Robot 2019; 4: eaax7044. [Article] [Google Scholar]
- Liu C, Li K, Yu X, et al. A multimodal self-propelling tensegrity structure. Adv Mater 2024; 36: 2314093. [Article] [Google Scholar]
- Pang W, Xu S, Wu J, et al. A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces. Proc Natl Acad Sci USA 2022; 119: e2079939177. [Article] [Google Scholar]
- Wu S, Hong Y, Zhao Y, et al. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci Adv 2023; 9: eadf8014. [Article] [Google Scholar]
- Zhang H, Yang X, Valenzuela C, et al. Wireless power transfer to electrothermal liquid crystal elastomer actuators. ACS Appl Mater Interfaces 2023; 15: 27195-27205. [Article] [CrossRef] [PubMed] [Google Scholar]
- Boothby JM, Gagnon JC, McDowell E, et al. An untethered soft robot based on liquid crystal elastomers. Soft Robotics 2022; 9: 154-162. [Article] [PubMed] [Google Scholar]
- Zhao L, Tian H, Liu H, et al. Bio-inspired soft-rigid hybrid smart artificial muscle based on liquid crystal elastomer and helical metal wire. Small 2023; 19: 2206342. [Article] [CrossRef] [PubMed] [Google Scholar]
- Min J, Wu Z, Zhang W, et al. Intelligent liquid crystal elastomer actuators with high mechanical strength, self-sensing, and automatic control. Adv Sens Res 2023; 3: 2300117. [Article] [Google Scholar]
- Wang C, Sim K, Chen J, et al. Soft ultrathin electronics innervated adaptive fully soft robots. Adv Mater 2018; 30: 1706695. [Article] [PubMed] [Google Scholar]
- Ford MJ, Ambulo CP, Kent TA, et al. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc Natl Acad Sci USA 2019; 116: 21438-21444. [Article] [Google Scholar]
- Kotikian A, Morales JM, Lu A, et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv Mater 2021, 33: 2101814 [PubMed] [Google Scholar]
- Chen G, Ma B, Chen Y, et al. Soft robots with plant-inspired gravitropism based on fluidic liquid metal. Adv Sci 2024; 11: 2306129. [Article] [CrossRef] [Google Scholar]
- He Q, Wang Z, Wang Y, et al. Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Sci Adv 2019; 5: eaax5746. [Article] [Google Scholar]
- Wang Z, Li K, He Q, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity. Adv Mater 2019; 31: 1806849. [Article] [Google Scholar]
- Kim H, Lee JA, Ambulo CP, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv Funct Mater 2019; 29: 1905063. [Article] [Google Scholar]
- Liu J, Gao Y, Wang H, et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Adv Intelligent Syst 2020; 2: 1900163. [Article] [Google Scholar]
- Wang Y, Dang A, Zhang Z, et al. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers. Adv Mater 2020; 32: 2004270. [Article] [PubMed] [Google Scholar]
- Kuenstler AS, Chen Y, Bui P, et al. Blueprinting photothermal shape-morphing of liquid crystal elastomers. Adv Mater 2020; 32: 2000609. [Article] [PubMed] [Google Scholar]
- Song C, Zhang Y, Bao J, et al. Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network. Adv Funct Mater 2023; 33: 2213771. [Article] [Google Scholar]
- Zhang J, Wang Y, Sun Y, et al. Multi-stimuli responsive soft actuator with locally controllable and programmable complex shape deformations. ACS Appl Polym Mater 2023; 5: 6199-6211. [Article] [Google Scholar]
- Liang Z, Jin B, Zhao H, et al. Rotini-like MXene@LCE actuator with diverse and programmable actuation based on dual-mode synergy. Small 2024, 20: 2305371 [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Song C, Bao J, et al. Near-infrared light-driven liquid crystalline elastomers with simultaneously enhanced actuation strain and stress. Sci China Mater 2023, 66: 4803-4813 [Google Scholar]
- Hu J, Nie Z, Wang M, et al. Springtail-inspired light-driven soft jumping robots based on liquid crystal elastomers with monolithic three-leaf panel fold structure. Angew Chem Int Ed 2023; 135: 202218227. [Article] [Google Scholar]
- Yang M, Xu Y, Zhang X, et al. Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv Funct Mater 2022, 32: 2201884 [Google Scholar]
- Yang Y, Meng L, Zhang J, et al. Near-infrared light-driven MXene/liquid crystal elastomer bimorph membranes for closed-loop controlled self-sensing bionic robots. Adv Sci 2024; 11: 2307862. [Article] [CrossRef] [Google Scholar]
- Zhao Y, Li Q, Liu Z, et al. Sunlight-powered self-excited oscillators for sustainable autonomous soft robotics. Sci Robot 2023; 8: eadf4753. [Article] [Google Scholar]
- Mohr R, Kratz K, Weigel T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 2006; 103: 3540-3545. [Article] [Google Scholar]
- Noh S, Moon SH, Shin TH, et al. Recent advances of magneto-thermal capabilities of nanoparticles: From design principles to biomedical applications. Nano Today 2017; 13: 61-76. [Article] [Google Scholar]
- Wang Y, Liu J, Yang S. Multi-functional liquid crystal elastomer composites. Appl Phys Rev 2022; 9: 011301. [Article] [Google Scholar]
- Wu Y, Zhang S, Yang Y, et al. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Sci Adv 2022; 8: eabo6021. [Article] [Google Scholar]
- Mirvakili SM, Hunter IW. Artificial muscles: Mechanisms, applications, and challenges. Adv Mater 2018; 30: 1704407. [Article] [PubMed] [Google Scholar]
- Naciri J, Srinivasan A, Jeon H, et al. Nematic elastomer fiber actuator. Macromolecules 2003; 36: 8499-8505. [Article] [Google Scholar]
- Fleischmann E‐, Forst FR, Zentel R. Liquid-crystalline elastomer fibers prepared in a microfluidic device. Macro Chem Phys 2014; 215: 1004-1011. [Article] [Google Scholar]
- Tian X, Guo Y, Zhang J, et al. Fiber actuators based on reversible thermal responsive liquid crystal elastomer. Small 2024; 20: 2306952. [Article] [Google Scholar]
- Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 2019; 119: 5298-5415. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu D, Li X, Zhang Y, et al. Novel biomimetic “spider web” robust, super-contractile liquid crystal elastomer active yarn soft actuator. Adv Sci 2024; 11: 2400557. [Article] [CrossRef] [Google Scholar]
- He Q, Wang Z, Wang Y, et al. Electrospun liquid crystal elastomer microfiber actuator. Sci Robot 2021; 6: eabi9704. [Article] [Google Scholar]
- Shang L, Yu Y, Liu Y, et al. Spinning and applications of bioinspired fiber systems. ACS Nano 2019; 13: 2749-2772. [Article] [Google Scholar]
- Wu D, Zhang Y, Yang H, et al. Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. Mater Horiz 2023; 10: 2587-2598. [Article] [Google Scholar]
- Hou W, Wang J, Lv J. Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles. Adv Mater 2023; 35: 2211800. [Article] [Google Scholar]
- Wang Q, Tian X, Zhang D, et al. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites. Nat Commun 2023; 14: 3869. [Article] [Google Scholar]
- Lugger SJD, Engels TAP, Cardinaels R, et al. Melt-extruded thermoplastic liquid crystal elastomer rotating fiber actuators. Adv Funct Mater 2023; 33: 2306853. [Article] [Google Scholar]
- Lin X, Saed MO, Terentjev EM. Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. Soft Matter 2021; 17: 5436-5443. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Roach DJ, Yuan C, Kuang X, et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces 2019; 11: 19514-19521. [Article] [Google Scholar]
- Sun J, Wang Y, Liao W, et al. Ultrafast, high-contractile electrothermal-driven liquid crystal elastomer fibers towards artificial muscles. Small 2021; 17: 2103700. [Article] [CrossRef] [Google Scholar]
- Mieszczanek P, Robinson TM, Dalton PD, et al. Convergence of machine vision and melt electrowriting. Adv Mater 2021; 33: 2100519. [Article] [PubMed] [Google Scholar]
- Brown TD, Dalton PD, Hutmacher DW. Melt electrospinning today: An opportune time for an emerging polymer process. Prog Polym Sci 2016; 56: 116-166. [Article] [Google Scholar]
- Javadzadeh M, del Barrio J, Sánchez‐Somolinos C. Melt electrowriting of liquid crystal elastomer scaffolds with programmed mechanical response. Adv Mater 2023; 35: 2209244. [Article] [Google Scholar]
- Feng X, Wang L, Xue Z, et al. Melt electrowriting enabled 3D liquid crystal elastomer structures for cross-scale actuators and temperature field sensors. Sci Adv 2024; 10: eadk3854. [Article] [Google Scholar]
- Wang Y, He Q, Wang Z, et al. Liquid crystal elastomer based dexterous artificial motor unit. Adv Mater 2023; 35: 2211283. [Article] [Google Scholar]
- He Q, Wang Z, Song Z, et al. Bioinspired design of vascular artificial muscle. Adv Mater Technologies 2019; 4: 1800244. [Article] [CrossRef] [Google Scholar]
- He Q, Wang Z, Wang Y, et al. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl Mater Interfaces 2020; 12: 35464-35474. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zadan M, Patel DK, Sabelhaus AP, et al. Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv Mater 2022; 34: 2200857. [Article] [Google Scholar]
- Chi Y, Li Y, Zhao Y, et al. Bistable and multistable actuators for soft robots: Structures, materials, and functionalities. Adv Mater 2022; 34: 2110384. [Article] [Google Scholar]
- Hebner TS, Korner K, Bowman CN, et al. Leaping liquid crystal elastomers. Sci Adv 2023; 9: eade1320. [Article] [Google Scholar]
- Jeon J, Choi JC, Lee H, et al. Continuous and programmable photomechanical jumping of polymer monoliths. Mater Today 2021; 49: 97-106. [Article] [Google Scholar]
- Annapooranan R, Wang Y, Cai S. Harnessing soft elasticity of liquid crystal elastomers to achieve low voltage driven actuation. Adv Mater Technologies 2023; 8: 2201969. [Article] [CrossRef] [Google Scholar]
- Fowler HE, Rothemund P, Keplinger C, et al. Liquid crystal elastomers with enhanced directional actuation to electric fields. Adv Mater 2021; 33: 2103806. [Article] [PubMed] [Google Scholar]
- Davidson ZS, Shahsavan H, Aghakhani A, et al. Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Sci Adv 2019; 5: eaay0855. [Article]arxiv:1904.09606 [Google Scholar]
- Zhang C, Chen G, Zhang K, et al. Repeatedly programmable liquid crystal dielectric elastomer with multimodal actuation. Adv Mater 2024; 36: 2313078. [Article] [Google Scholar]
- Silva PES, Lin X, Vaara M, et al. Active textile fabrics from weaving liquid crystalline elastomer filaments. Adv Mater 2023; 35: 2210689. [Article] [Google Scholar]
- Sun J, Liao W, Yang Z. Additive manufacturing of liquid crystal elastomer actuators based on knitting technology. Adv Mater 2023; 35: 2302706. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.