Issue |
Natl Sci Open
Volume 4, Number 3, 2025
Special Topic: Thermoelectric Materials and Devices
|
|
---|---|---|
Article Number | 20250004 | |
Number of page(s) | 18 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20250004 | |
Published online | 25 March 2025 |
- Qin B, Kanatzidis MG, Zhao LD. The development and impact of tin selenide on thermoelectrics. Science 2024; 386: eadp2444. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xiao Y, Zhao LD. Seeking new, highly effective thermoelectrics. Science 2020; 367: 1196-1197. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: From materials and structures to devices. Chem Rev 2020; 120: 7399-7515. [Article] [Google Scholar]
- Xie H, Zhao L, Kanatzidis MG. Lattice dynamics and thermoelectric properties of diamondoid materials. Interdiscip Mater 2024; 3: 5-28. [Article] [Google Scholar]
- Xie H, Hao S, Cai S, et al. Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu0.8+yAg0.2In1−yTe2. Energy Environ Sci 2020; 13: 3693-3705. [Article] [Google Scholar]
- Tang X, Li Z, Liu W, et al. A comprehensive review on Bi2Te3‐based thin films: Thermoelectrics and beyond. Interdiscip Mater 2022; 1: 88-115. [Article] [Google Scholar]
- Liu D, Wang D, Hong T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science 2023; 380: 841-846. [Article] [Google Scholar]
- Qin Y, Qin B, Hong T, et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3. Science 2024; 383: 1204-1209. [Article] [Google Scholar]
- Liu S, Wen Y, Bai S, et al. Lattice plainification leads to high thermoelectric performance of p-type PbSe crystals. Adv Mater 2024; 36: 2401828. [Article] [CrossRef] [Google Scholar]
- Qin B, Wang D, Liu X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 2021; 373: 556-561. [Article] [Google Scholar]
- Jia B, Wu D, Xie L, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 2024; 384: 81-86. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Xie H, Li Z, et al. Unraveling the role of entropy in thermoelectrics: Entropy-stabilized quintuple rock salt PbGeSnCdxTe3+x. J Am Chem Soc 2023; 145: 8677-8688. [Article] [Google Scholar]
- Moshwan R, Shi XL, Liu WD, et al. Entropy engineering: An innovative strategy for designing high-performance thermoelectric materials and devices. Nano Today 2024; 58: 102475. [Article] [Google Scholar]
- Cai S, Hao S, Luo ZZ, et al. Discordant nature of Cd in PbSe: Off-centering and core–shell nanoscale CdSe precipitates lead to high thermoelectric performance. Energy Environ Sci 2020; 13: 200-211. [Article] [Google Scholar]
- Xie H, Zhao LD. Origin of off-centering effect and the influence on heat transport in thermoelectrics. Mater Futures 2024; 3: 013501. [Article] [Google Scholar]
- Li Y, Bai S, Wen Y, et al. Realizing high-efficiency thermoelectric module by suppressing donor-like effect and improving preferred orientation in n-type Bi2(Te, Se)3. Sci Bull 2024; 69: 1728-1737. [Article] [Google Scholar]
- Zhu YK, Sun Y, Dong X, et al. General design of high-performance and textured layered thermoelectric materials via stacking of mechanically exfoliated crystals. Joule 2024; 8: 2412-2424. [Article] [Google Scholar]
- Wang L, Wen Y, Bai S, et al. Realizing thermoelectric cooling and power generation in n-type PbS0.6Se0.4 via lattice plainification and interstitial doping. Nat Commun 2024; 15: 3782. [Article] [Google Scholar]
- Wang S, Wen Y, Bai S, et al. Realizing high-performance thermoelectric modules through enhancing the power factor via optimizing the carrier mobility in n-type PbSe crystals. Energy Environ Sci 2024; 17: 2588-2597. [Article] [Google Scholar]
- Zhan S, Bai S, Qiu Y, et al. Insight into carrier and phonon transports of PbSnS2 crystals. Adv Mater 2024; 36: 2412967. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yuan W, Deng Q, Pan D, et al. Synergistic carrier and phonon transport advance Ag dynamically-doped n-type PbTe thermoelectrics via Mn alloying. J Mater Chem A 2024; 12: 1300-1308. [Article] [Google Scholar]
- Jin Y, Qiu Y, Bai S, et al. Modifying roles of CuSbSe2 in realizing high thermoelectric performance of GeTe. Adv Energy Mater 2024; 14: 2400623. [Article] [CrossRef] [Google Scholar]
- Li J, Zhang X, Wang X, et al. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. J Am Chem Soc 2018; 140: 16190-16197. [Article] [Google Scholar]
- Hong T, Qin B, Qin Y, et al. All-SnTe-based thermoelectric power generation enabled by stepwise optimization of n-type SnTe. J Am Chem Soc 2024; 146: 8727-8736. [Article] [Google Scholar]
- Ming H, Luo ZZ, Chen Z, et al. Chemical pressure-driven band convergence and discordant atoms intensify phonon scattering leading to high thermoelectric performance in SnTe. J Am Chem Soc 2024; 146: 28448-28458. [Article] [Google Scholar]
- Shi X, Song S, Gao G, et al. Global band convergence design for high-performance thermoelectric power generation in Zintls. Science 2024; 384: 757-762. [Article] [Google Scholar]
- Yin L, Li X, Bao X, et al. CALPHAD accelerated design of advanced full-Zintl thermoelectric device. Nat Commun 2024; 15: 1468. [Article] [Google Scholar]
- Qi Y, Lei H, Guo J, et al. Superconductivity in alkaline Earth metal-filled skutterudites BaxIr4X12 (X = As, P). J Am Chem Soc 2017; 139: 8106-8109. [Article] arxiv:1708.05166 [Google Scholar]
- Shi X, Yang J, Salvador JR, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 2012; 134: 2842. [Article] [Google Scholar]
- Zhao LD, Lo SH, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014; 508: 373-377. [Article] [Google Scholar]
- Chang C, Wu M, He D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018; 360: 778-783. [Article] [Google Scholar]
- He W, Wang D, Wu H, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 2019; 365: 1418-1424. [Article] [Google Scholar]
- Hu Y, Bai S, Wen Y, et al. Stepwise optimization of thermoelectric performance in n-type SnS. Adv Funct Mater 2025; 35: 2414881. [Article] [CrossRef] [Google Scholar]
- Hu H, Ju Y, Yu J, et al. Highly stabilized and efficient thermoelectric copper selenide. Nat Mater 2024; 23: 527-534. [Article] [Google Scholar]
- Li JW, Han Z, Yu J, et al. Wide-temperature-range thermoelectric n-type Mg3(Sb, Bi)2 with high average and peak zT values. Nat Commun 2023; 14: 7428. [Article] [Google Scholar]
- Xie H, Liu Y, Zhang Y, et al. High thermoelectric performance in chalcopyrite Cu1−xAgxGaTe2–ZnTe: Nontrivial band structure and dynamic doping effect. J Am Chem Soc 2022; 144: 9113-9125. [Article] [Google Scholar]
- Xie H, Li Z, Liu Y, et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity. J Am Chem Soc 2023; 145: 3211-3220. [Article] [Google Scholar]
- Zhang J, Liu R, Cheng N, et al. High‐performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv Mater 2014; 26: 3848-3853. [Article] [Google Scholar]
- Qiu P, Qin Y, Zhang Q, et al. Intrinsically high thermoelectric performance in AgInSe2 n‐type diamond-like compounds. Adv Sci 2018; 5: 1700727. [Article] [Google Scholar]
- Ming H, Zhu C, Chen T, et al. Creating high-dense stacking faults and endo-grown nanoneedles to enhance phonon scattering and improve thermoelectric performance of Cu2SnSe3. Nano Energy 2022; 100: 107510. [Article] [Google Scholar]
- Hu L, Luo Y, Fang YW, et al. High thermoelectric performance through crystal symmetry enhancement in triply doped diamondoid compound Cu2SnSe3. Adv Energy Mater 2021; 11: 2100661. [Article] [CrossRef] [Google Scholar]
- Huang Y, Zhang B, Li J, et al. Unconventional doping effect leads to ultrahigh average thermoelectric power factor in Cu3SbSe4-based composites. Adv Mater 2022; 34: 2109952. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nagaoka A, Yoshino K, Masuda T, et al. Environmentally friendly thermoelectric sulphide Cu2ZnSnS4 single crystals achieving a 1.6 dimensionless figure of merit ZT. J Mater Chem A 2021; 9: 15595-15604. [Article] [Google Scholar]
- Li W, Luo Y, Xu T, et al. Toward ultrahigh thermoelectric performance of Cu2SnS3‐based materials by analog alloying. Small 2023; 19: 2301963. [Article] [CrossRef] [PubMed] [Google Scholar]
- Marcano G, Rincón C, de Chalbaud LM, et al. Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3. J Appl Phys 2001; 90: 1847-1853. [Article] [Google Scholar]
- Shi X, Xi L, Fan J, et al. Cu–Se bond network and thermoelectric compounds with complex diamondlike structure. Chem Mater 2010; 22: 6029-6031. [Article] [Google Scholar]
- Ming H, Zhu C, Chen T, et al. Theoretical study of intrinsic and extrinsic point defects and their effects on thermoelectric properties of Cu2SnSe3. Inorg Chem 2023; 62: 2607-2616. [Article] [Google Scholar]
- Yang X, Xu C, Giles NC. Intrinsic electron mobilities in CdSe, CdS, ZnO, and ZnS and their use in analysis of temperature-dependent Hall measurements. J Appl Phys 2008; 104: 073727. [Article] [CrossRef] [Google Scholar]
- Xie H, Bozin ES, Li Z, et al. Hidden local symmetry breaking in silver diamondoid compounds is root cause of ultralow thermal conductivity. Adv Mater 2022; 34: 2202255. [Article] [CrossRef] [PubMed] [Google Scholar]
- Skoug EJ, Cain JD, Morelli DT. Thermoelectric properties of the Cu2SnSe3–Cu2GeSe3 solid solution. J Alloys Compd 2010; 506: 18-21. [Article] [Google Scholar]
- Wang M, He M, Zhu L, et al. Boosting the thermoelectric performance of zinc blende-like Cu2SnSe3 through phase structure and band structure regulations. J Mater Chem A 2022; 10: 12946-12956. [Article] [Google Scholar]
- Ming H, Zhu G, Zhu C, et al. Boosting thermoelectric performance of Cu2SnSe3 via comprehensive band structure regulation and intensified phonon scattering by multidimensional defects. ACS Nano 2021; 15: 10532-10541. [Article] [Google Scholar]
- Gao D, Wen Y, Bai S, et al. Robustly boosting thermoelectric performance of n-type PbSe via lattice plainification and dynamic doping. Small 2024; 20: 2407556. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi H, Su L, Bai S, et al. Realizing high in-plane carrier mobility in n-type SnSe crystals through deformation potential modification. Energy Environ Sci 2023; 16: 3128-3136. [Article] [Google Scholar]
- Su L, Wang D, Wang S, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022; 375: 1385-1389. [Article] [Google Scholar]
- Jin Y, Hong T, Wang D, et al. Band structure and microstructure modulations enable high quality factor to elevate thermoelectric performance in Ge0.9Sb0.1Te-x%FeTe2. Mater Today Phys 2021; 20: 100444. [Article] [Google Scholar]
- Lubchenko V, Wolynes PG. The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. Proc Natl Acad Sci USA 2003; 100: 1515-1518. [Article] arxiv:cond-mat/0206194 [Google Scholar]
- Xu N, Wyart M, Liu AJ, et al. Excess vibrational modes and the boson peak in model glasses. Phys Rev Lett 2007; 98: 175502. [Article] arxiv:cond-mat/0611474 [CrossRef] [Google Scholar]
- Xie H, Su X, Hao S, et al. Large thermal conductivity drops in the diamondoid lattice of CuFeS2 by discordant atom doping. J Am Chem Soc 2019; 141: 18900-18909. [Article] [Google Scholar]
- Xie H, Su X, Zhang X, et al. Origin of intrinsically low thermal conductivity in talnakhite Cu17.6Fe17.6S32 thermoelectric material: Correlations between lattice dynamics and thermal transport. J Am Chem Soc 2019; 141: 10905-10914. [Article] [Google Scholar]
- Xie H, Hao S, Bao J, et al. All-inorganic halide perovskites as potential thermoelectric materials: Dynamic cation off-centering induces ultralow thermal conductivity. J Am Chem Soc 2020; 142: 9553-9563. [Article] [Google Scholar]
- Dong J, Liu Y, Li Z, et al. High thermoelectric performance in rhombohedral GeSe-LiBiTe2. J Am Chem Soc 2024; 146: 17355-17364. [Article] [Google Scholar]
- Wybourne MN, Kiff BJ. Acoustic-optical phonon scattering observed in the thermal conductivity of polydiacetylene single crystals. J Phys C-Solid State Phys 1985; 18: 309-318. [Article] [Google Scholar]
- Han S, Dai S, Ma J, et al. Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics. Nat Phys 2023; 19: 1649-1657. [Article] arxiv:2303.10899 [Google Scholar]
- Liang HP, Geng S, Jia T, et al. Unveiling disparities and promises of Cu and Ag chalcopyrites for thermoelectrics. Phys Rev B 2024; 109: 035205. [Article] [CrossRef] [Google Scholar]
- Wang R, Cai J, Zhang Q, et al. Mismatched atomic bonds and ultralow thermal conductivity in Ag-based ternary chalcopyrites. Phys Rev B 2023; 107: 115202. [Article] [CrossRef] [Google Scholar]
- Frenking G, Fröhlich N. The nature of the bonding in transition-metal compounds. Chem Rev 2000; 100: 717-774. [Article] [Google Scholar]
- Root DM, Landis CR, Cleveland T. Valence bond concepts applied to the molecular mechanics description of molecular shapes. 1. Application to nonhypervalent molecules of the P-block. J Am Chem Soc 1993; 115: 4201-4209. [Article] [Google Scholar]
- Kotochigova S, Levine ZH, Shirley EL, et al. Local-density-functional calculations of the energy of atoms. Phys Rev A 1997; 55: 191-199. [Article] [Google Scholar]
- Fan YJ, Peng KL, Huang YL, et al. Enhanced thermoelectric performance of Cu2SnSe3 via synergistic effects of Cd-doping and CuGaTe2 alloying. Rare Met 2022; 41: 3466-3474. [Article] [Google Scholar]
- Li Y, Liu G, Cao T, et al. Enhanced thermoelectric properties of Cu2SnSe3 by (Ag, In)‐Co‐doping. Adv Funct Mater 2016; 26: 6025-6032. [Article] [Google Scholar]
- Zhou Y, Wu H, Wang D, et al. Investigations on electrical and thermal transport properties of Cu2SnSe3 with unusual coexisting nanophases. Mater Today Phys 2018; 7: 77-88. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.