Issue
Natl Sci Open
Volume 4, Number 3, 2025
Special Topic: Thermoelectric Materials and Devices
Article Number 20250005
Number of page(s) 10
Section Materials Science
DOI https://doi.org/10.1360/nso/20250005
Published online 30 April 2025
  • He J, Tritt TM. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017; 357: eaak9997. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater 2017; 29: 1605884. [Article] [CrossRef] [Google Scholar]
  • Liu H, Shi X, Xu F, et al. Copper ion liquid-like thermoelectrics. Nat Mater 2012; 11: 422-425. [Article] [Google Scholar]
  • Zhang Z, Zhao K, Chen H, et al. Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-yAgyTe1-2xSxSex. Acta Mater 2022; 224: 117512. [Article] [Google Scholar]
  • Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008; 320: 634-638. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zheng Y, Zhang Q, Su X, et al. Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater 2015; 5: 1401391. [Article] [CrossRef] [Google Scholar]
  • Mao J, Zhu H, Ding Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019; 365: 495-498. [Article] [Google Scholar]
  • Zhao X, Yang S, Wen X, et al. A fully flexible intelligent thermal touch panel based on intrinsically plastic Ag2S semiconductor. Adv Mater 2022; 34: 2107479. [Article] [CrossRef] [Google Scholar]
  • Yang Q, Yang S, Qiu P, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022; 377: 854-858. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wei T, Qiu P, Zhao K, et al. Ag2Q-Based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv Mater 2023; 35: 2110236. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ma Y, Huang H, Liu Y, et al. Remarkable plasticity and softness of polymorphic InSe van der Waals crystals. J Materiomics 2023; 9: 709-716. [Article] [Google Scholar]
  • Qin H, Qu W, Zhang Y, et al. Nanotwins strengthening high thermoelectric performance bismuth antimony telluride alloys. Adv Sci 2022; 9: 2200432. [Article] [CrossRef] [Google Scholar]
  • Zhu Y, Sun Y, Zhu J, et al. Mediating point defects endows n-Type Bi2Te3 with high thermoelectric performance and superior mechanical robustness for power generation application. Small 2022; 18: 2201352. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang W, Sun Y, Feng Y, et al. High thermoelectric performance bismuth telluride prepared by cold pressing and annealing facilitating large scale application. Mater Today Phys 2021; 21: 100522. [Article] [Google Scholar]
  • Chen H, Wei T, Zhao K, et al. Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat 2021; 3: 22-35. [Article] [Google Scholar]
  • Qiu J, Yan Y, Luo T, et al. 3D Printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance. Energy Environ Sci 2019; 12: 3106-3117. [Article] [Google Scholar]
  • Qiu J, Yan Y, Xie H, et al. Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Sci China Mater 2021; 64: 1507-1520. [Article] [Google Scholar]
  • Sun Y, Guo F, Feng Y, et al. Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding. Nat Commun 2023; 14: 8085. [Article] [Google Scholar]
  • Zhu Y, Jin Y, Zhu J, et al. Design of n-type textured Bi2Te3 with robust mechanical properties for thermoelectric micro-refrigeration application. Adv Sci 2023; 10: 2206395. [Article] [CrossRef] [Google Scholar]
  • Ferhat M, Nagao J. Thermoelectric and transport properties of β-Ag2Se compounds. J Appl Phys 2000; 88: 813-816. [Article] [Google Scholar]
  • Mi W, Qiu P, Zhang T, et al. Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Appl Phys Lett 2014; 104: 133903. [Article] [CrossRef] [Google Scholar]
  • Huang S, Wei TR, Chen H, et al. Thermoelectric Ag2Se: Imperfection, homogeneity, and reproducibility. ACS Appl Mater Interfaces 2021; 13: 60192-60199. [Article] [Google Scholar]
  • Wang H, Feng X, Lu Z, et al. Synergetic enhancement of strength-ductility and thermoelectric properties of Ag2Te by domain boundaries. Adv Mater 2023; 35: 2302969. [Article] [CrossRef] [Google Scholar]
  • Peng L, Yang S, Wei TR, et al. Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. J Materiomics 2022; 8: 656-661. [Article] [Google Scholar]
  • Huang H, Chen H, Gao Z, et al. Room-temperature wide-gap inorganic materials with excellent plasticity. Adv Funct Mater 2023; 33: 2306042. [Article] [CrossRef] [Google Scholar]
  • Feng L, Guo A, Liu K, et al. Highly deformable Ag2Te1-xSex-based thermoelectric compounds. Mater Today Phys 2023; 33: 101051. [Article] [Google Scholar]
  • Chen J, Sun Q, Bao D, et al. Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase. Acta Mater 2021; 220: 117335. [Article] [Google Scholar]
  • Wang H, Liu X, Zhou Z, et al. Constructing n-type Ag2Se/CNTs composites toward synergistically enhanced thermoelectric and mechanical performance. Acta Mater 2022; 223: 117502. [Article] [Google Scholar]
  • Liang J, Qiu P, Zhu Y, et al. Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1–xSx system. Research 2020; 2020: 6591981 [Google Scholar]
  • Liu Z, Gao W, Meng X, et al. Mechanical properties of nanostructured thermoelectric materials α-MgAgSb. Scripta Mater 2017; 127: 72-75. [Article] [Google Scholar]
  • Shu R, Zhou Y, Wang Q, et al. Mg3+δSbxBi2−x family: A promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature. Adv Funct Mater 2019; 29: 1807235. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Zhu T, Su X, Zhang Q, et al. Structural transformation and thermoelectric performance in Ag2Te1−xSex solid solution. J Alloys Compd 2021; 871: 159507. [Article] [Google Scholar]
  • Liu M, Zhang X, Zhang S, et al. Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics. Nat Commun 2024; 15: 6580. [Article] [Google Scholar]
  • Li G, Aydemir U, Duan B, et al. Micro- and macromechanical properties of thermoelectric lead chalcogenides. ACS Appl Mater Interfaces 2017; 9: 40488-40496. [Article] [Google Scholar]
  • Li A, Wang Y, Li Y, et al. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nat Commun 2024; 15: 5108. [Article] [Google Scholar]
  • Isotta E, Peng W, Balodhi A, et al. Elastic moduli: A tool for understanding chemical bonding and thermal transport in thermoelectric materials. Angew Chem Int Ed 2023; 62: e202213649. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Agne M T, Imasato K, Anand S, et al. Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature. Mater Today Phys 2018; 6: 83-88. [Article] [Google Scholar]
  • Jiang J, Britton TB, Wilkinson A J. Evolution of dislocation density distributions in copper during tensile deformation. Acta Mater 2013; 61: 7227-7239. [Article] [Google Scholar]
  • Bacon DJ, Hull D. Introduction to Dislocations. Amsterdam: Elsevier, 2011 [Google Scholar]
  • Zhang BB, Yan FK, Zhao MJ, et al. Combined strengthening from nanotwins and nanoprecipitates in an iron-based superalloy. Acta Mater 2018; 151: 310-320. [Article] [Google Scholar]
  • Li D, Zhang JH, Li JM, et al. High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method. Mater Chem Front 2020; 4: 875-880. [Article] [Google Scholar]
  • Yang D, Su X, Meng F, et al. Facile room temperature solventless synthesis of high thermoelectric performance Ag2 Se via a dissociative adsorption reaction. J Mater Chem A 2017; 5: 23243-23251. [Article] [Google Scholar]
  • Liang J, Liu J, Qiu P, et al. Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials. Nat Commun 2023; 14: 8442. [Article] [Google Scholar]
  • Liu W, Zhang Q, Lan Y, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater 2011; 1: 577-587. [Article] [Google Scholar]
  • Hong M, Wang Y, Liu W, et al. Arrays of planar vacancies in superior thermoelectric Ge1−x−yCdxBiyTe with band convergence. Adv Energy Mater 2018; 8: 1801837. [Article] [CrossRef] [Google Scholar]
  • Chen H, Shao C, Huang S, et al. High-entropy cubic pseudo-ternary Ag2(S, Se, Te) materials with excellent ductility and thermoelectric performance. Adv Energy Mater 2024; 14: 2303473. [Article] [CrossRef] [Google Scholar]
  • Wang H, Pei Y, LaLonde AD, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc Natl Acad Sci USA 2012; 109: 9705-9709. [Article] [Google Scholar]
  • Wei TR, Tan G, Wu CF, et al. Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe. Appl Phys Lett 2017; 110: 053901. [Article] [CrossRef] [Google Scholar]
  • Yang S, Gao Z, Qiu P, et al. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Adv Mater 2021; 33: 2007681. [Article] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.