Open Access
Issue |
Natl Sci Open
Volume 4, Number 5, 2025
|
|
---|---|---|
Article Number | 20250016 | |
Number of page(s) | 20 | |
Section | Information Sciences | |
DOI | https://doi.org/10.1360/nso/20250016 | |
Published online | 21 August 2025 |
- Jin T, Sun Z, Li L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun 2020; 11: 5381.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Coorey G, Figtree GA, Fletcher DF, et al. The health digital twin: Advancing precision cardiovascular medicine. Nat Rev Cardiol 2021; 18: 803–804.[Article] [Google Scholar]
- Maksymenko K, Clarke AK, Mendez Guerra I, et al. A myoelectric digital twin for fast and realistic modelling in deep learning. Nat Commun 2023; 14: 1600.[Article] [Google Scholar]
- Kim S, Heo S. An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture. Nat Commun 2024; 15: 1561.[Article] [Google Scholar]
- White G, Zink A, Codecá L, et al. A digital twin smart city for citizen feedback. Cities 2021; 110: 103064.[Article] [Google Scholar]
- Mendi AF, Erol T, Dogan D. Digital twin in the military field. IEEE Internet Comput 2022; 26: 33–40.[Article] [Google Scholar]
- Kannan K, Arunachalam N. A digital twin for grinding wheel: An information sharing platform for sustainable grinding process. J Manuf Sci Eng 2019; 141: 021015.[Article] [Google Scholar]
- Batty M. Digital twins in city planning. Nat Comput Sci 2024; 4: 192–199.[Article] [Google Scholar]
- Bauer P, Stevens B, Hazeleger W. A digital twin of Earth for the green transition. Nat Clim Chang 2021; 11: 80–83.[Article] [Google Scholar]
- Li X, Feng M, Ran Y, et al. Big Data in Earth system science and progress towards a digital twin. Nat Rev Earth Environ 2023; 4: 319–332.[Article] [Google Scholar]
- Sizemore N, Oliphant K, Zheng R, et al. A digital twin of the infant microbiome to predict neurodevelopmental deficits. Sci Adv 2024; 10: eadj0400.[Article] [Google Scholar]
- Tao F, Zhang H, Zhang C. Advancements and challenges of digital twins in industry. Nat Comput Sci 2024; 4: 169–177.[Article] [Google Scholar]
- Tao F, Qi Q. Make more digital twins. Nature 2019; 573: 490–491.[Article] [CrossRef] [Google Scholar]
- Lei Z, Zhou H, Dai X, et al. Digital twin based monitoring and control for DC-DC converters. Nat Commun 2023; 14: 5604.[Article] [Google Scholar]
- Wei Y, Hu T, Zhou T, et al. Consistency retention method for CNC machine tool digital twin model. J Manuf Syst 2021; 58: 313–322.[Article] [Google Scholar]
- Lv Z, Xie S. Artificial intelligence in the digital twins: State of the art, challenges, and future research topics. Digital Twin 2022; 1: 12.[Article] [Google Scholar]
- Kapteyn MG, Pretorius JVR, Willcox KE. A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat Comput Sci 2021; 1: 337–347.[Article] [Google Scholar]
- Hürkamp A, Gellrich S, Ossowski T, et al. Combining simulation and machine learning as digital twin for the manufacturing of overmolded thermoplastic composites. J Manuf Mater Process 2020; 4: 92.[Article] [Google Scholar]
- Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inf 2020; 16: 669–680.[Article] [Google Scholar]
- Bebis G, Georgiopoulos M. Feed-forward neural networks. IEEE Potentials 1994; 13: 27–31.[Article] [CrossRef] [Google Scholar]
- Li Z, Liu F, Yang W, et al. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst 2022; 33: 6999–7019.[Article] [Google Scholar]
- Tolman EC. Cognitive maps in rats and men. Psychol Rev 1948; 55: 189–208.[Article] [Google Scholar]
- Epstein RA, Patai EZ, Julian JB, et al. The cognitive map in humans: Spatial navigation and beyond. Nat Neurosci 2017; 20: 1504–1513.[Article] [Google Scholar]
- Bellmund JLS, Gärdenfors P, Moser EI, et al. Navigating cognition: Spatial codes for human thinking. Science 2018; 362: eaat6766.[Article] [Google Scholar]
- Tang W, Shin JD, Jadhav SP. Geometric transformation of cognitive maps for generalization across hippocampal-prefrontal circuits. Cell Rep 2023; 42: 112246.[Article] [Google Scholar]
- Whittington JCR, Muller TH, Mark S, et al. The tolman-eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation. Cell 2020; 183: 1249–1263.e23.[Article] [Google Scholar]
- Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain's spatial representation system. Annu Rev Neurosci 2008; 31: 69–89.[Article] [Google Scholar]
- Enel P, Procyk E, Quilodran R, et al. Reservoir computing properties of neural dynamics in prefrontal cortex. PLoS Comput Biol 2016; 12: e1004967.[Article] [Google Scholar]
- Saadat H. Power System Analysis. New York: WCB/McGraw-Hill, 1999. [Google Scholar]
- Li H, Li Z, Yuan G, et al. Development of new generation cooling control system after rolling in hot rolled strip based on UFC. J Iron Steel Res Int 2013; 20: 29–34.[Article] [Google Scholar]
- van de Vusse JG. A new model for the stirred tank reactor. Chem Eng Sci 1962; 17: 507–521.[Article] [Google Scholar]
- Zhan J, Wang S, Ma X, et al. STGAT-MAD: Spatial-temporal graph attention network for multivariate time series anomaly detection. In: Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore, 2022, 3568–3572. [Google Scholar]
- Ren C, Chen C, Li P, et al. Digital-twin-enabled task scheduling for state monitoring in aircraft testing process. IEEE Internet Things J 2024; 11: 26751–26765.[Article] [Google Scholar]
- Zheng Y, Koh HY, Jin M, et al. Correlation-aware spatial-temporal graph learning for multivariate time-series anomaly detection. IEEE Trans Neural Netw Learn Syst 2024; 35: 11802–11816.[Article] [Google Scholar]
- Alves T, Morris T. OpenPLC: An IEC 61,131-3 compliant open source industrial controller for cyber security research. Comput Security 2018; 78: 364–379.[Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.